骨组织工程用掺锶生物活性玻璃和羟基磷灰石纳米棒富集的胶原蛋白基三维打印支架上的成骨细胞和破骨细胞活性。

Giorgia Borciani, Giorgia Montalbano, Francesca Perut, Gabriela Ciapetti, Nicola Baldini, Chiara Vitale-Brovarone
{"title":"骨组织工程用掺锶生物活性玻璃和羟基磷灰石纳米棒富集的胶原蛋白基三维打印支架上的成骨细胞和破骨细胞活性。","authors":"Giorgia Borciani, Giorgia Montalbano, Francesca Perut, Gabriela Ciapetti, Nicola Baldini, Chiara Vitale-Brovarone","doi":"10.1088/1748-605X/ad72c3","DOIUrl":null,"url":null,"abstract":"<p><p>Bone tissue engineering (BTE) aims to promote bone regeneration by means of the synergistic effect of biomaterials, cells, and other factors, as potential alternative to conventional treatments for bone fractures. To this aim, a composite material was developed, based on collagen type I, strontium-enriched mesoporous bioactive glasses, and hydroxyapatite nanorods as bioactive and biomimetic components. Nanostructured scaffolds were 3D printed and subsequently chemically crosslinked with genipin to improve mechanical properties and stability. The developed nanostructured system was maintained in culture until 3 weeks with a co-culture of human bone cells to provide an<i>ex vivo</i>model of bone microenvironment and examine the cellular crosstalk and signaling pathways through paracrine cell activities. Human osteoblasts (OBs), derived from trabecular bone, and human osteoclast precursors (OCs), isolated from buffy coat samples were involved, with OBs seeded on the scaffold and OC precursors seeded in a transwell device. When compared to the material without inorganic components, the bioactive and biomimetic scaffold positively influenced cell proliferation and cell metabolic activity, boosting alkaline phosphatase activity of OBs, and reducing OC differentiation. Thus, the bioactive and biomimetic system promoted an enhanced cellular response, highlighting its potential application in BTE.</p>","PeriodicalId":72389,"journal":{"name":"Biomedical materials (Bristol, England)","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Osteoblast and osteoclast activity on collagen-based 3D printed scaffolds enriched with strontium-doped bioactive glasses and hydroxyapatite nanorods for bone tissue engineering.\",\"authors\":\"Giorgia Borciani, Giorgia Montalbano, Francesca Perut, Gabriela Ciapetti, Nicola Baldini, Chiara Vitale-Brovarone\",\"doi\":\"10.1088/1748-605X/ad72c3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Bone tissue engineering (BTE) aims to promote bone regeneration by means of the synergistic effect of biomaterials, cells, and other factors, as potential alternative to conventional treatments for bone fractures. To this aim, a composite material was developed, based on collagen type I, strontium-enriched mesoporous bioactive glasses, and hydroxyapatite nanorods as bioactive and biomimetic components. Nanostructured scaffolds were 3D printed and subsequently chemically crosslinked with genipin to improve mechanical properties and stability. The developed nanostructured system was maintained in culture until 3 weeks with a co-culture of human bone cells to provide an<i>ex vivo</i>model of bone microenvironment and examine the cellular crosstalk and signaling pathways through paracrine cell activities. Human osteoblasts (OBs), derived from trabecular bone, and human osteoclast precursors (OCs), isolated from buffy coat samples were involved, with OBs seeded on the scaffold and OC precursors seeded in a transwell device. When compared to the material without inorganic components, the bioactive and biomimetic scaffold positively influenced cell proliferation and cell metabolic activity, boosting alkaline phosphatase activity of OBs, and reducing OC differentiation. Thus, the bioactive and biomimetic system promoted an enhanced cellular response, highlighting its potential application in BTE.</p>\",\"PeriodicalId\":72389,\"journal\":{\"name\":\"Biomedical materials (Bristol, England)\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biomedical materials (Bristol, England)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1088/1748-605X/ad72c3\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomedical materials (Bristol, England)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1088/1748-605X/ad72c3","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

骨组织工程(BTE)旨在通过生物材料、细胞和其他因素的协同作用促进骨再生,从而替代传统的骨折治疗方法。为此,我们开发了一种复合材料,以 I 型胶原蛋白、富锶介孔生物活性玻璃和羟基磷灰石纳米颗粒为生物活性和生物仿生成分。纳米结构支架是三维打印的,随后与基因素进行化学交联,以提高机械性能和稳定性。将所开发的纳米结构系统与人类骨细胞共同培养3周,以提供骨微环境的体外模型,并通过旁分泌细胞活动研究细胞串联和信号通路。与不含无机成分的材料相比,生物活性和仿生支架对细胞增殖和细胞代谢活性有积极影响,提高了成骨细胞的碱性磷酸酶活性,减少了破骨细胞的分化。因此,生物活性和生物仿生系统促进了细胞反应的增强,突出了其在骨组织工程中的应用潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Osteoblast and osteoclast activity on collagen-based 3D printed scaffolds enriched with strontium-doped bioactive glasses and hydroxyapatite nanorods for bone tissue engineering.

Bone tissue engineering (BTE) aims to promote bone regeneration by means of the synergistic effect of biomaterials, cells, and other factors, as potential alternative to conventional treatments for bone fractures. To this aim, a composite material was developed, based on collagen type I, strontium-enriched mesoporous bioactive glasses, and hydroxyapatite nanorods as bioactive and biomimetic components. Nanostructured scaffolds were 3D printed and subsequently chemically crosslinked with genipin to improve mechanical properties and stability. The developed nanostructured system was maintained in culture until 3 weeks with a co-culture of human bone cells to provide anex vivomodel of bone microenvironment and examine the cellular crosstalk and signaling pathways through paracrine cell activities. Human osteoblasts (OBs), derived from trabecular bone, and human osteoclast precursors (OCs), isolated from buffy coat samples were involved, with OBs seeded on the scaffold and OC precursors seeded in a transwell device. When compared to the material without inorganic components, the bioactive and biomimetic scaffold positively influenced cell proliferation and cell metabolic activity, boosting alkaline phosphatase activity of OBs, and reducing OC differentiation. Thus, the bioactive and biomimetic system promoted an enhanced cellular response, highlighting its potential application in BTE.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Effect of synthesis strategies on morphology and antibacterial properties and photocatalytic activity of graphitic carbon nitride (g-C3N4). Injectable nanocomposite hydrogels with co-delivery of oxygen and anticancer drugs for higher cell viability of healthy cells than cancer cells under normoxic and hypoxic conditions. Hybrid near and far field electrospinning of PVDF-TrFE/BaTiO3scaffolds: morphology and osteoblast-like cell responses. Decellularized cartilage tissue bioink formulation for osteochondral graft development. Improvement of cellular pattern organization and clarity through centrifugal force.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1