使用硅锗带隙工程电阻开关晶体管的低能耗可调 LIF 神经元。

IF 5.5 3区 材料科学 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY Nanoscale Research Letters Pub Date : 2024-08-23 DOI:10.1186/s11671-024-04079-5
Yijoon Kim, Hyangwoo Kim, Kyounghwan Oh, Ju Hong Park, Byoung Don Kong, Chang-Ki Baek
{"title":"使用硅锗带隙工程电阻开关晶体管的低能耗可调 LIF 神经元。","authors":"Yijoon Kim,&nbsp;Hyangwoo Kim,&nbsp;Kyounghwan Oh,&nbsp;Ju Hong Park,&nbsp;Byoung Don Kong,&nbsp;Chang-Ki Baek","doi":"10.1186/s11671-024-04079-5","DOIUrl":null,"url":null,"abstract":"<div><p>We have proposed leaky integrate-and-fire (LIF) neuron having low-energy consumption and tunable functionality without external circuit components. Our LIF neuron has a simple configuration consisting of only three components: one bandgap-engineered resistive switching transistor (BE-RST), one capacitor, and one resistor. Here, the crucial point is that BE-RST with a silicon–germanium heterojunction possesses an amplified hysteric current switching with a low latch-up voltage due to improved hole storage capability and impact ionization coefficient. Therefore, the proposed neuron utilizing BE-RST requires an energy consumption of 0.36 pJ/spike, which is approximately six times lower than 2.08 pJ/spike of pure silicon-RST based neuron. In addition, the spiking properties can be tuned by modulating the leakage rate and threshold through gate bias, which contributes to energy-efficient sparse-activity and high learning accuracy. As a result, our proposed neuron can be a promising candidate for executing various spiking neural network applications.</p></div>","PeriodicalId":51136,"journal":{"name":"Nanoscale Research Letters","volume":"19 1","pages":""},"PeriodicalIF":5.5000,"publicationDate":"2024-08-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11343930/pdf/","citationCount":"0","resultStr":"{\"title\":\"Low-energy and tunable LIF neuron using SiGe bandgap-engineered resistive switching transistor\",\"authors\":\"Yijoon Kim,&nbsp;Hyangwoo Kim,&nbsp;Kyounghwan Oh,&nbsp;Ju Hong Park,&nbsp;Byoung Don Kong,&nbsp;Chang-Ki Baek\",\"doi\":\"10.1186/s11671-024-04079-5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>We have proposed leaky integrate-and-fire (LIF) neuron having low-energy consumption and tunable functionality without external circuit components. Our LIF neuron has a simple configuration consisting of only three components: one bandgap-engineered resistive switching transistor (BE-RST), one capacitor, and one resistor. Here, the crucial point is that BE-RST with a silicon–germanium heterojunction possesses an amplified hysteric current switching with a low latch-up voltage due to improved hole storage capability and impact ionization coefficient. Therefore, the proposed neuron utilizing BE-RST requires an energy consumption of 0.36 pJ/spike, which is approximately six times lower than 2.08 pJ/spike of pure silicon-RST based neuron. In addition, the spiking properties can be tuned by modulating the leakage rate and threshold through gate bias, which contributes to energy-efficient sparse-activity and high learning accuracy. As a result, our proposed neuron can be a promising candidate for executing various spiking neural network applications.</p></div>\",\"PeriodicalId\":51136,\"journal\":{\"name\":\"Nanoscale Research Letters\",\"volume\":\"19 1\",\"pages\":\"\"},\"PeriodicalIF\":5.5000,\"publicationDate\":\"2024-08-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11343930/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nanoscale Research Letters\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://link.springer.com/article/10.1186/s11671-024-04079-5\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nanoscale Research Letters","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1186/s11671-024-04079-5","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

我们提出的漏电积分发射(LIF)神经元能耗低、功能可调,且无需外部电路元件。我们的 LIF 神经元结构简单,仅由三个元件组成:一个带隙工程电阻开关晶体管(BE-RST)、一个电容器和一个电阻器。其中最关键的一点是,硅锗异质结的 BE-RST 由于提高了空穴存储能力和冲击电离系数,因此具有放大的滞后电流开关和较低的闩锁电压。因此,利用 BE-RST 的神经元所需的能耗为 0.36 pJ/spike,比基于纯硅-RST 的神经元的 2.08 pJ/spike 低约六倍。此外,尖峰特性还可以通过栅极偏置来调节漏率和阈值,从而实现高能效的稀疏活动和高学习精度。因此,我们提出的神经元有望成为执行各种尖峰神经网络应用的候选方案。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Low-energy and tunable LIF neuron using SiGe bandgap-engineered resistive switching transistor

We have proposed leaky integrate-and-fire (LIF) neuron having low-energy consumption and tunable functionality without external circuit components. Our LIF neuron has a simple configuration consisting of only three components: one bandgap-engineered resistive switching transistor (BE-RST), one capacitor, and one resistor. Here, the crucial point is that BE-RST with a silicon–germanium heterojunction possesses an amplified hysteric current switching with a low latch-up voltage due to improved hole storage capability and impact ionization coefficient. Therefore, the proposed neuron utilizing BE-RST requires an energy consumption of 0.36 pJ/spike, which is approximately six times lower than 2.08 pJ/spike of pure silicon-RST based neuron. In addition, the spiking properties can be tuned by modulating the leakage rate and threshold through gate bias, which contributes to energy-efficient sparse-activity and high learning accuracy. As a result, our proposed neuron can be a promising candidate for executing various spiking neural network applications.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Nanoscale Research Letters
Nanoscale Research Letters 工程技术-材料科学:综合
CiteScore
11.30
自引率
0.00%
发文量
110
审稿时长
48 days
期刊介绍: Nanoscale Research Letters (NRL) provides an interdisciplinary forum for communication of scientific and technological advances in the creation and use of objects at the nanometer scale. NRL is the first nanotechnology journal from a major publisher to be published with Open Access.
期刊最新文献
Antimicrobial membranes based on polycaprolactone:pectin blends reinforced with zeolite faujasite for cloxacillin-controlled release Integration of silver nanostructures in wireless sensor networks for enhanced biochemical sensing Crystal growth, structural phase transitions and optical gap evolution of FAPb(Br1-xClx)3 hybrid perovskites (FA: formamidinium ion, CH(NH2)2+) Insights into semi-continuous synthesis of iron oxide nanoparticles (IONPs) via thermal decomposition of iron oleate Studies on the electrical and optical conductivity of barium-nickel ferrite nanoparticles doped with Zn
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1