Mingtao Tan, Hong Jiang, Rusong Chai, Miao Fan, Zengting Niu, Guotong Sun, Shanchun Yan, Dun Jiang
{"title":"通过激活 ROS/CnCC 信号通路介导的 P450 解毒作用,镉暴露可赋予 Lymantria dispar 对β-氯氰菊酯的耐受性。","authors":"Mingtao Tan, Hong Jiang, Rusong Chai, Miao Fan, Zengting Niu, Guotong Sun, Shanchun Yan, Dun Jiang","doi":"10.1016/j.jhazmat.2024.135566","DOIUrl":null,"url":null,"abstract":"<p><p>Heavy metal pollutants are important abiotic environmental factors affecting pest habitats. In this study, Cd pre-exposure significantly increased the tolerance of Lymantria dispar larvae to β-cypermethrin, but did not significantly alter their tolerance to λ-cyhalothrin and bifenthrin. The activation of P450 by Cd exposure is the key mechanism that induces insecticide cross-tolerance in L. dispar larvae. Both before and after β-cypermethrin treatment, Cd exposure significantly increased the expression of CYP6AB224 and CYP6AB226 in L. dispar larvae. Silencing CYP6AB224 and CYP6AB226 reduced the tolerance of Cd-treated L. dispar larvae to β-cypermethrin. Transgenic CYP6AB224 and CYP6AB226 genes significantly increased the tolerance of Drosophila and Sf9 cells to β-cypermethrin, and the recombinant proteins of both genes could significantly metabolise β-cypermethrin. Cd exposure significantly increased the expression of CnCC and Maf. CnCC was found to be a key transcription factor regulating CYP6AB224- and CYP6AB226-activated insecticide cross-tolerance in Cd-treated larvae. Decreasing reactive oxygen species (ROS) levels in the Cd-treated larvae or increasing ROS levels in the untreated larvae reduced or enhanced the expression of CnCC, CYP6AB224 and CYP6AB226 and β-cypermethrin tolerance in L. dispar larvae, respectively. Collectively, Cd exposure confers β-cypermethrin tolerance in L. dispar larvae through the ROS/CnCC signalling pathway-mediated P450 detoxification.</p>","PeriodicalId":94082,"journal":{"name":"Journal of hazardous materials","volume":"478 ","pages":"135566"},"PeriodicalIF":0.0000,"publicationDate":"2024-10-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Cd exposure confers β-cypermethrin tolerance in Lymantria dispar by activating the ROS/CnCC signaling pathway-mediated P450 detoxification.\",\"authors\":\"Mingtao Tan, Hong Jiang, Rusong Chai, Miao Fan, Zengting Niu, Guotong Sun, Shanchun Yan, Dun Jiang\",\"doi\":\"10.1016/j.jhazmat.2024.135566\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Heavy metal pollutants are important abiotic environmental factors affecting pest habitats. In this study, Cd pre-exposure significantly increased the tolerance of Lymantria dispar larvae to β-cypermethrin, but did not significantly alter their tolerance to λ-cyhalothrin and bifenthrin. The activation of P450 by Cd exposure is the key mechanism that induces insecticide cross-tolerance in L. dispar larvae. Both before and after β-cypermethrin treatment, Cd exposure significantly increased the expression of CYP6AB224 and CYP6AB226 in L. dispar larvae. Silencing CYP6AB224 and CYP6AB226 reduced the tolerance of Cd-treated L. dispar larvae to β-cypermethrin. Transgenic CYP6AB224 and CYP6AB226 genes significantly increased the tolerance of Drosophila and Sf9 cells to β-cypermethrin, and the recombinant proteins of both genes could significantly metabolise β-cypermethrin. Cd exposure significantly increased the expression of CnCC and Maf. CnCC was found to be a key transcription factor regulating CYP6AB224- and CYP6AB226-activated insecticide cross-tolerance in Cd-treated larvae. Decreasing reactive oxygen species (ROS) levels in the Cd-treated larvae or increasing ROS levels in the untreated larvae reduced or enhanced the expression of CnCC, CYP6AB224 and CYP6AB226 and β-cypermethrin tolerance in L. dispar larvae, respectively. Collectively, Cd exposure confers β-cypermethrin tolerance in L. dispar larvae through the ROS/CnCC signalling pathway-mediated P450 detoxification.</p>\",\"PeriodicalId\":94082,\"journal\":{\"name\":\"Journal of hazardous materials\",\"volume\":\"478 \",\"pages\":\"135566\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-10-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of hazardous materials\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1016/j.jhazmat.2024.135566\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/8/16 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of hazardous materials","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1016/j.jhazmat.2024.135566","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/8/16 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
Cd exposure confers β-cypermethrin tolerance in Lymantria dispar by activating the ROS/CnCC signaling pathway-mediated P450 detoxification.
Heavy metal pollutants are important abiotic environmental factors affecting pest habitats. In this study, Cd pre-exposure significantly increased the tolerance of Lymantria dispar larvae to β-cypermethrin, but did not significantly alter their tolerance to λ-cyhalothrin and bifenthrin. The activation of P450 by Cd exposure is the key mechanism that induces insecticide cross-tolerance in L. dispar larvae. Both before and after β-cypermethrin treatment, Cd exposure significantly increased the expression of CYP6AB224 and CYP6AB226 in L. dispar larvae. Silencing CYP6AB224 and CYP6AB226 reduced the tolerance of Cd-treated L. dispar larvae to β-cypermethrin. Transgenic CYP6AB224 and CYP6AB226 genes significantly increased the tolerance of Drosophila and Sf9 cells to β-cypermethrin, and the recombinant proteins of both genes could significantly metabolise β-cypermethrin. Cd exposure significantly increased the expression of CnCC and Maf. CnCC was found to be a key transcription factor regulating CYP6AB224- and CYP6AB226-activated insecticide cross-tolerance in Cd-treated larvae. Decreasing reactive oxygen species (ROS) levels in the Cd-treated larvae or increasing ROS levels in the untreated larvae reduced or enhanced the expression of CnCC, CYP6AB224 and CYP6AB226 and β-cypermethrin tolerance in L. dispar larvae, respectively. Collectively, Cd exposure confers β-cypermethrin tolerance in L. dispar larvae through the ROS/CnCC signalling pathway-mediated P450 detoxification.