Lei Su, Xinyue Dong, Junjie Peng, Hong Cheng, Nicholas J Craig, Bo Hu, Juan-Ying Li
{"title":"基于自组织图谱和多形状描述符的海滩塑料碎片轮廓分割:快速显示碎片和磨损类型。","authors":"Lei Su, Xinyue Dong, Junjie Peng, Hong Cheng, Nicholas J Craig, Bo Hu, Juan-Ying Li","doi":"10.1016/j.jhazmat.2024.135564","DOIUrl":null,"url":null,"abstract":"<p><p>Environmental plastic fragments have been verified as byproducts of large plastic and its secondary pollutants including micro and nanoplastics. There are few quantitative studies available, but their contours have values for the weathering mechanisms. We used geometric descriptors, fractal dimensions, and Fourier descriptors to characterize field and artificial polyethylene and polypropylene samples as a means of investigating the contour characteristics. It provides a methodological framework for contour classification. Unsupervised classification was performed using self-organizing neural networks with size-invariance parameters. We revealed the isometric phenomenon of plastic fragments during fragmentation, i.e., that the degree of contour rounding and complexity increase and decrease, respectively, with decreasing fragment size. With an average error rate of 8.9 %, we can distinguish artificial samples from field samples. It was also validated by the difference in Carbonyl Index between groups. We propose a two-stage process for plastic fragmentation and give three types of contour features which were key in the description of fragmented contours, i.e., size, complexity, and rounding. Our work will improve the accuracy of characterizations regarding the weathering and fragmentation processes of certain kinds of plastic fragments. The contour parameters also have the potential to be applied in more realistic scenarios and varied polymers.</p>","PeriodicalId":94082,"journal":{"name":"Journal of hazardous materials","volume":"478 ","pages":"135564"},"PeriodicalIF":0.0000,"publicationDate":"2024-10-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Segmentation of beach plastic fragments' contours based on self-organizing map and multi-shape descriptors: A rapid indication of fragmentation and wearing types.\",\"authors\":\"Lei Su, Xinyue Dong, Junjie Peng, Hong Cheng, Nicholas J Craig, Bo Hu, Juan-Ying Li\",\"doi\":\"10.1016/j.jhazmat.2024.135564\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Environmental plastic fragments have been verified as byproducts of large plastic and its secondary pollutants including micro and nanoplastics. There are few quantitative studies available, but their contours have values for the weathering mechanisms. We used geometric descriptors, fractal dimensions, and Fourier descriptors to characterize field and artificial polyethylene and polypropylene samples as a means of investigating the contour characteristics. It provides a methodological framework for contour classification. Unsupervised classification was performed using self-organizing neural networks with size-invariance parameters. We revealed the isometric phenomenon of plastic fragments during fragmentation, i.e., that the degree of contour rounding and complexity increase and decrease, respectively, with decreasing fragment size. With an average error rate of 8.9 %, we can distinguish artificial samples from field samples. It was also validated by the difference in Carbonyl Index between groups. We propose a two-stage process for plastic fragmentation and give three types of contour features which were key in the description of fragmented contours, i.e., size, complexity, and rounding. Our work will improve the accuracy of characterizations regarding the weathering and fragmentation processes of certain kinds of plastic fragments. The contour parameters also have the potential to be applied in more realistic scenarios and varied polymers.</p>\",\"PeriodicalId\":94082,\"journal\":{\"name\":\"Journal of hazardous materials\",\"volume\":\"478 \",\"pages\":\"135564\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-10-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of hazardous materials\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1016/j.jhazmat.2024.135564\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/8/17 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of hazardous materials","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1016/j.jhazmat.2024.135564","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/8/17 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
Segmentation of beach plastic fragments' contours based on self-organizing map and multi-shape descriptors: A rapid indication of fragmentation and wearing types.
Environmental plastic fragments have been verified as byproducts of large plastic and its secondary pollutants including micro and nanoplastics. There are few quantitative studies available, but their contours have values for the weathering mechanisms. We used geometric descriptors, fractal dimensions, and Fourier descriptors to characterize field and artificial polyethylene and polypropylene samples as a means of investigating the contour characteristics. It provides a methodological framework for contour classification. Unsupervised classification was performed using self-organizing neural networks with size-invariance parameters. We revealed the isometric phenomenon of plastic fragments during fragmentation, i.e., that the degree of contour rounding and complexity increase and decrease, respectively, with decreasing fragment size. With an average error rate of 8.9 %, we can distinguish artificial samples from field samples. It was also validated by the difference in Carbonyl Index between groups. We propose a two-stage process for plastic fragmentation and give three types of contour features which were key in the description of fragmented contours, i.e., size, complexity, and rounding. Our work will improve the accuracy of characterizations regarding the weathering and fragmentation processes of certain kinds of plastic fragments. The contour parameters also have the potential to be applied in more realistic scenarios and varied polymers.