{"title":"两个生物奇点之间的较量:免疫反应与癌症","authors":"Tomoya Katakai, Taku Okazaki","doi":"10.2142/biophysico.bppb-v21.s006","DOIUrl":null,"url":null,"abstract":"<p><p>In a post-growth multicellular organism, the phenomenon in which a small number of rare cells can be the starting point for inducing a dramatic change in the entire system is considered a \"biological singularity.\" The immune response and cancer can be regarded as singularity phenomena in mammals, but their nature is fundamentally different. The immune response is considered a \"programmed\" singularity, whereas cancer is an \"unprogrammed\" singularity. These two systems perpetually engage in a cycle of attack and defense within the organism. The outcome is depending on the wining system, which determines whether the individual experiences a state resembling light or darkness. However, the overall mechanism of the competition remains unclear and is expected to be elucidated with future innovations in bioimaging technologies. Immune checkpoint blockade therapy is a means by which the two singularity balances can be artificially manipulated; therefore, mechanistic insight is necessary for cancer treatment strategies. Altogether, these findings provide a different perspective crucial for understanding the behavior of dynamic cell populations in multicellular organisms.</p>","PeriodicalId":101323,"journal":{"name":"Biophysics and physicobiology","volume":"21 Supplemental","pages":"e211006"},"PeriodicalIF":1.6000,"publicationDate":"2024-02-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11338675/pdf/","citationCount":"0","resultStr":"{\"title\":\"A battle between two biological singularities: Immune response vs. cancer.\",\"authors\":\"Tomoya Katakai, Taku Okazaki\",\"doi\":\"10.2142/biophysico.bppb-v21.s006\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>In a post-growth multicellular organism, the phenomenon in which a small number of rare cells can be the starting point for inducing a dramatic change in the entire system is considered a \\\"biological singularity.\\\" The immune response and cancer can be regarded as singularity phenomena in mammals, but their nature is fundamentally different. The immune response is considered a \\\"programmed\\\" singularity, whereas cancer is an \\\"unprogrammed\\\" singularity. These two systems perpetually engage in a cycle of attack and defense within the organism. The outcome is depending on the wining system, which determines whether the individual experiences a state resembling light or darkness. However, the overall mechanism of the competition remains unclear and is expected to be elucidated with future innovations in bioimaging technologies. Immune checkpoint blockade therapy is a means by which the two singularity balances can be artificially manipulated; therefore, mechanistic insight is necessary for cancer treatment strategies. Altogether, these findings provide a different perspective crucial for understanding the behavior of dynamic cell populations in multicellular organisms.</p>\",\"PeriodicalId\":101323,\"journal\":{\"name\":\"Biophysics and physicobiology\",\"volume\":\"21 Supplemental\",\"pages\":\"e211006\"},\"PeriodicalIF\":1.6000,\"publicationDate\":\"2024-02-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11338675/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biophysics and physicobiology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2142/biophysico.bppb-v21.s006\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q4\",\"JCRName\":\"BIOPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biophysics and physicobiology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2142/biophysico.bppb-v21.s006","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/1 0:00:00","PubModel":"eCollection","JCR":"Q4","JCRName":"BIOPHYSICS","Score":null,"Total":0}
A battle between two biological singularities: Immune response vs. cancer.
In a post-growth multicellular organism, the phenomenon in which a small number of rare cells can be the starting point for inducing a dramatic change in the entire system is considered a "biological singularity." The immune response and cancer can be regarded as singularity phenomena in mammals, but their nature is fundamentally different. The immune response is considered a "programmed" singularity, whereas cancer is an "unprogrammed" singularity. These two systems perpetually engage in a cycle of attack and defense within the organism. The outcome is depending on the wining system, which determines whether the individual experiences a state resembling light or darkness. However, the overall mechanism of the competition remains unclear and is expected to be elucidated with future innovations in bioimaging technologies. Immune checkpoint blockade therapy is a means by which the two singularity balances can be artificially manipulated; therefore, mechanistic insight is necessary for cancer treatment strategies. Altogether, these findings provide a different perspective crucial for understanding the behavior of dynamic cell populations in multicellular organisms.