两个生物奇点之间的较量:免疫反应与癌症

IF 1.6 Q4 BIOPHYSICS Biophysics and physicobiology Pub Date : 2024-02-09 eCollection Date: 2024-01-01 DOI:10.2142/biophysico.bppb-v21.s006
Tomoya Katakai, Taku Okazaki
{"title":"两个生物奇点之间的较量:免疫反应与癌症","authors":"Tomoya Katakai, Taku Okazaki","doi":"10.2142/biophysico.bppb-v21.s006","DOIUrl":null,"url":null,"abstract":"<p><p>In a post-growth multicellular organism, the phenomenon in which a small number of rare cells can be the starting point for inducing a dramatic change in the entire system is considered a \"biological singularity.\" The immune response and cancer can be regarded as singularity phenomena in mammals, but their nature is fundamentally different. The immune response is considered a \"programmed\" singularity, whereas cancer is an \"unprogrammed\" singularity. These two systems perpetually engage in a cycle of attack and defense within the organism. The outcome is depending on the wining system, which determines whether the individual experiences a state resembling light or darkness. However, the overall mechanism of the competition remains unclear and is expected to be elucidated with future innovations in bioimaging technologies. Immune checkpoint blockade therapy is a means by which the two singularity balances can be artificially manipulated; therefore, mechanistic insight is necessary for cancer treatment strategies. Altogether, these findings provide a different perspective crucial for understanding the behavior of dynamic cell populations in multicellular organisms.</p>","PeriodicalId":101323,"journal":{"name":"Biophysics and physicobiology","volume":"21 Supplemental","pages":"e211006"},"PeriodicalIF":1.6000,"publicationDate":"2024-02-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11338675/pdf/","citationCount":"0","resultStr":"{\"title\":\"A battle between two biological singularities: Immune response vs. cancer.\",\"authors\":\"Tomoya Katakai, Taku Okazaki\",\"doi\":\"10.2142/biophysico.bppb-v21.s006\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>In a post-growth multicellular organism, the phenomenon in which a small number of rare cells can be the starting point for inducing a dramatic change in the entire system is considered a \\\"biological singularity.\\\" The immune response and cancer can be regarded as singularity phenomena in mammals, but their nature is fundamentally different. The immune response is considered a \\\"programmed\\\" singularity, whereas cancer is an \\\"unprogrammed\\\" singularity. These two systems perpetually engage in a cycle of attack and defense within the organism. The outcome is depending on the wining system, which determines whether the individual experiences a state resembling light or darkness. However, the overall mechanism of the competition remains unclear and is expected to be elucidated with future innovations in bioimaging technologies. Immune checkpoint blockade therapy is a means by which the two singularity balances can be artificially manipulated; therefore, mechanistic insight is necessary for cancer treatment strategies. Altogether, these findings provide a different perspective crucial for understanding the behavior of dynamic cell populations in multicellular organisms.</p>\",\"PeriodicalId\":101323,\"journal\":{\"name\":\"Biophysics and physicobiology\",\"volume\":\"21 Supplemental\",\"pages\":\"e211006\"},\"PeriodicalIF\":1.6000,\"publicationDate\":\"2024-02-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11338675/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biophysics and physicobiology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2142/biophysico.bppb-v21.s006\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q4\",\"JCRName\":\"BIOPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biophysics and physicobiology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2142/biophysico.bppb-v21.s006","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/1 0:00:00","PubModel":"eCollection","JCR":"Q4","JCRName":"BIOPHYSICS","Score":null,"Total":0}
引用次数: 0

摘要

在生长后的多细胞生物体中,少数稀有细胞可能成为诱导整个系统发生巨大变化的起点,这种现象被认为是 "生物奇异现象"。免疫反应和癌症可被视为哺乳动物的奇异现象,但它们的性质却有着本质的不同。免疫反应被认为是一种 "程序化 "奇异现象,而癌症则是一种 "非程序化 "奇异现象。这两个系统在生物体内不断进行攻防循环。结果取决于获胜的系统,它决定了个体是经历类似光明还是黑暗的状态。然而,竞争的整体机制仍不清楚,有望通过未来生物成像技术的创新加以阐明。免疫检查点阻断疗法是人为操纵两种奇异性平衡的一种手段;因此,对癌症治疗策略的机制进行深入研究是必要的。总之,这些发现提供了一个不同的视角,对于理解多细胞生物体中动态细胞群的行为至关重要。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A battle between two biological singularities: Immune response vs. cancer.

In a post-growth multicellular organism, the phenomenon in which a small number of rare cells can be the starting point for inducing a dramatic change in the entire system is considered a "biological singularity." The immune response and cancer can be regarded as singularity phenomena in mammals, but their nature is fundamentally different. The immune response is considered a "programmed" singularity, whereas cancer is an "unprogrammed" singularity. These two systems perpetually engage in a cycle of attack and defense within the organism. The outcome is depending on the wining system, which determines whether the individual experiences a state resembling light or darkness. However, the overall mechanism of the competition remains unclear and is expected to be elucidated with future innovations in bioimaging technologies. Immune checkpoint blockade therapy is a means by which the two singularity balances can be artificially manipulated; therefore, mechanistic insight is necessary for cancer treatment strategies. Altogether, these findings provide a different perspective crucial for understanding the behavior of dynamic cell populations in multicellular organisms.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.10
自引率
0.00%
发文量
0
期刊最新文献
Chemical tongues as multipurpose bioanalytical tools for the characterization of complex biological samples. Unraveling the fastest myosin: Discovery history and structure-function relationships of algae Chara myosin XI. Internal structure of Mycoplasma mobile gliding machinery analyzed by negative staining electron tomography. Application of single-molecule analysis to singularity phenomenon of cells. X-ray diffraction recording from a small amount of fibrous protein materials oriented by a micro shear-flow cell.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1