Norulsamani Abdullah , Nurul Atiqah Izzati Md Ishak , K.H. Tan , M.A. Zaed , R. Saidur , A.K. Pandey
{"title":"研究各种蚀刻剂对用于电化学能量转换的 Ti3C2Tx MXene 合成的影响","authors":"Norulsamani Abdullah , Nurul Atiqah Izzati Md Ishak , K.H. Tan , M.A. Zaed , R. Saidur , A.K. Pandey","doi":"10.1016/j.flatc.2024.100730","DOIUrl":null,"url":null,"abstract":"<div><p>MXenes represent a revolutionary class of two-dimensional (2D) materials that have garnered significant attention due to their unique properties, including excellent electrical conductivity, and remarkable mechanical strength. This study investigates the influence of different etching agents on the synthesis of MXenes for electrochemical energy conversion applications, particularly in methanol oxidation reactions (MOR). Morphological characterization, particle distribution and sizing, elemental analysis, and surface chemistry assessments were conducted using field emission scanning electron microscopy (FESEM), elemental mapping, transmission electron microscopy (TEM), x-ray diffraction (XRD), and x-ray photoelectron spectroscopy (XPS). Electrochemical techniques such as cyclic voltammetry (CV), electrochemical active surface area (ECSA), Tafel analysis, electrochemical impedance spectroscopy (EIS), and long-term stability assessment were employed. The study reveals that PtRu/MXene synthesized with the FeF<sub>3</sub>/HCl etching route exhibits the highest ECSA value and peak current density, being 12.3 times and 3.63 times higher than those achieved via the LiF/HCl etching route. The kinetic rate, tolerance to catalyst poisoning and long-term stability also show the better results for this etching route. These findings suggest promising potential for PtRu/MXene_FeF<sub>3</sub>/HCl as an effective anodic electrocatalyst in direct methanol fuel cell (DMFC) applications.</p></div>","PeriodicalId":316,"journal":{"name":"FlatChem","volume":"47 ","pages":"Article 100730"},"PeriodicalIF":5.9000,"publicationDate":"2024-08-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Investigating the impact of various etching agents on Ti3C2Tx MXene synthesis for electrochemical energy conversion\",\"authors\":\"Norulsamani Abdullah , Nurul Atiqah Izzati Md Ishak , K.H. Tan , M.A. Zaed , R. Saidur , A.K. Pandey\",\"doi\":\"10.1016/j.flatc.2024.100730\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>MXenes represent a revolutionary class of two-dimensional (2D) materials that have garnered significant attention due to their unique properties, including excellent electrical conductivity, and remarkable mechanical strength. This study investigates the influence of different etching agents on the synthesis of MXenes for electrochemical energy conversion applications, particularly in methanol oxidation reactions (MOR). Morphological characterization, particle distribution and sizing, elemental analysis, and surface chemistry assessments were conducted using field emission scanning electron microscopy (FESEM), elemental mapping, transmission electron microscopy (TEM), x-ray diffraction (XRD), and x-ray photoelectron spectroscopy (XPS). Electrochemical techniques such as cyclic voltammetry (CV), electrochemical active surface area (ECSA), Tafel analysis, electrochemical impedance spectroscopy (EIS), and long-term stability assessment were employed. The study reveals that PtRu/MXene synthesized with the FeF<sub>3</sub>/HCl etching route exhibits the highest ECSA value and peak current density, being 12.3 times and 3.63 times higher than those achieved via the LiF/HCl etching route. The kinetic rate, tolerance to catalyst poisoning and long-term stability also show the better results for this etching route. These findings suggest promising potential for PtRu/MXene_FeF<sub>3</sub>/HCl as an effective anodic electrocatalyst in direct methanol fuel cell (DMFC) applications.</p></div>\",\"PeriodicalId\":316,\"journal\":{\"name\":\"FlatChem\",\"volume\":\"47 \",\"pages\":\"Article 100730\"},\"PeriodicalIF\":5.9000,\"publicationDate\":\"2024-08-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"FlatChem\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2452262724001247\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"FlatChem","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2452262724001247","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
Investigating the impact of various etching agents on Ti3C2Tx MXene synthesis for electrochemical energy conversion
MXenes represent a revolutionary class of two-dimensional (2D) materials that have garnered significant attention due to their unique properties, including excellent electrical conductivity, and remarkable mechanical strength. This study investigates the influence of different etching agents on the synthesis of MXenes for electrochemical energy conversion applications, particularly in methanol oxidation reactions (MOR). Morphological characterization, particle distribution and sizing, elemental analysis, and surface chemistry assessments were conducted using field emission scanning electron microscopy (FESEM), elemental mapping, transmission electron microscopy (TEM), x-ray diffraction (XRD), and x-ray photoelectron spectroscopy (XPS). Electrochemical techniques such as cyclic voltammetry (CV), electrochemical active surface area (ECSA), Tafel analysis, electrochemical impedance spectroscopy (EIS), and long-term stability assessment were employed. The study reveals that PtRu/MXene synthesized with the FeF3/HCl etching route exhibits the highest ECSA value and peak current density, being 12.3 times and 3.63 times higher than those achieved via the LiF/HCl etching route. The kinetic rate, tolerance to catalyst poisoning and long-term stability also show the better results for this etching route. These findings suggest promising potential for PtRu/MXene_FeF3/HCl as an effective anodic electrocatalyst in direct methanol fuel cell (DMFC) applications.
期刊介绍:
FlatChem - Chemistry of Flat Materials, a new voice in the community, publishes original and significant, cutting-edge research related to the chemistry of graphene and related 2D & layered materials. The overall aim of the journal is to combine the chemistry and applications of these materials, where the submission of communications, full papers, and concepts should contain chemistry in a materials context, which can be both experimental and/or theoretical. In addition to original research articles, FlatChem also offers reviews, minireviews, highlights and perspectives on the future of this research area with the scientific leaders in fields related to Flat Materials. Topics of interest include, but are not limited to, the following: -Design, synthesis, applications and investigation of graphene, graphene related materials and other 2D & layered materials (for example Silicene, Germanene, Phosphorene, MXenes, Boron nitride, Transition metal dichalcogenides) -Characterization of these materials using all forms of spectroscopy and microscopy techniques -Chemical modification or functionalization and dispersion of these materials, as well as interactions with other materials -Exploring the surface chemistry of these materials for applications in: Sensors or detectors in electrochemical/Lab on a Chip devices, Composite materials, Membranes, Environment technology, Catalysis for energy storage and conversion (for example fuel cells, supercapacitors, batteries, hydrogen storage), Biomedical technology (drug delivery, biosensing, bioimaging)