{"title":"SAIPy:利用深度学习进行单站地震监测的 Python 软件包","authors":"","doi":"10.1016/j.cageo.2024.105686","DOIUrl":null,"url":null,"abstract":"<div><p>Seismology has witnessed significant advancements in recent years with the application of deep learning methods to address a broad range of problems. These techniques have demonstrated their remarkable ability to effectively extract statistical properties from extensive datasets, surpassing the capabilities of traditional approaches to an extent. In this study, we present SAIPy, an open-source Python package specifically developed for fast seismic data processing by implementing deep learning. SAIPy offers solutions for multiple seismological tasks, including earthquake signal detection, seismic phase picking, first motion polarity identification and magnitude estimation. We introduce upgraded versions of previously published models such as CREIME_RT capable of identifying earthquakes with an accuracy above 99.8% and a root mean squared error of 0.38 unit in magnitude estimation. These upgraded models outperform state-of-the-art approaches like the Vision Transformer network. SAIPy provides an API that simplifies the integration of these advanced models, including CREIME_RT, DynaPicker_v2, and PolarCAP, along with benchmark datasets. It also, to the best of our knowledge, introduces the first fully automated deep learning based pipeline to process continuous waveforms. The package has the potential to be used for real-time earthquake monitoring to enable timely actions to mitigate the impact of seismic events. Ongoing development efforts aim to further enhance SAIPy’s performance and incorporate additional features that enhance exploration efforts, and it also would be interesting to approach the retraining of the whole package as a multi-task learning problem. A detailed description of all functions is available in a supplementary document.</p></div>","PeriodicalId":55221,"journal":{"name":"Computers & Geosciences","volume":null,"pages":null},"PeriodicalIF":4.2000,"publicationDate":"2024-08-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0098300424001699/pdfft?md5=181c42ee7372a7ceb6bfb0f6134f713e&pid=1-s2.0-S0098300424001699-main.pdf","citationCount":"0","resultStr":"{\"title\":\"SAIPy: A Python package for single-station earthquake monitoring using deep learning\",\"authors\":\"\",\"doi\":\"10.1016/j.cageo.2024.105686\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Seismology has witnessed significant advancements in recent years with the application of deep learning methods to address a broad range of problems. These techniques have demonstrated their remarkable ability to effectively extract statistical properties from extensive datasets, surpassing the capabilities of traditional approaches to an extent. In this study, we present SAIPy, an open-source Python package specifically developed for fast seismic data processing by implementing deep learning. SAIPy offers solutions for multiple seismological tasks, including earthquake signal detection, seismic phase picking, first motion polarity identification and magnitude estimation. We introduce upgraded versions of previously published models such as CREIME_RT capable of identifying earthquakes with an accuracy above 99.8% and a root mean squared error of 0.38 unit in magnitude estimation. These upgraded models outperform state-of-the-art approaches like the Vision Transformer network. SAIPy provides an API that simplifies the integration of these advanced models, including CREIME_RT, DynaPicker_v2, and PolarCAP, along with benchmark datasets. It also, to the best of our knowledge, introduces the first fully automated deep learning based pipeline to process continuous waveforms. The package has the potential to be used for real-time earthquake monitoring to enable timely actions to mitigate the impact of seismic events. Ongoing development efforts aim to further enhance SAIPy’s performance and incorporate additional features that enhance exploration efforts, and it also would be interesting to approach the retraining of the whole package as a multi-task learning problem. A detailed description of all functions is available in a supplementary document.</p></div>\",\"PeriodicalId\":55221,\"journal\":{\"name\":\"Computers & Geosciences\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.2000,\"publicationDate\":\"2024-08-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S0098300424001699/pdfft?md5=181c42ee7372a7ceb6bfb0f6134f713e&pid=1-s2.0-S0098300424001699-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computers & Geosciences\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0098300424001699\",\"RegionNum\":2,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computers & Geosciences","FirstCategoryId":"89","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0098300424001699","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
SAIPy: A Python package for single-station earthquake monitoring using deep learning
Seismology has witnessed significant advancements in recent years with the application of deep learning methods to address a broad range of problems. These techniques have demonstrated their remarkable ability to effectively extract statistical properties from extensive datasets, surpassing the capabilities of traditional approaches to an extent. In this study, we present SAIPy, an open-source Python package specifically developed for fast seismic data processing by implementing deep learning. SAIPy offers solutions for multiple seismological tasks, including earthquake signal detection, seismic phase picking, first motion polarity identification and magnitude estimation. We introduce upgraded versions of previously published models such as CREIME_RT capable of identifying earthquakes with an accuracy above 99.8% and a root mean squared error of 0.38 unit in magnitude estimation. These upgraded models outperform state-of-the-art approaches like the Vision Transformer network. SAIPy provides an API that simplifies the integration of these advanced models, including CREIME_RT, DynaPicker_v2, and PolarCAP, along with benchmark datasets. It also, to the best of our knowledge, introduces the first fully automated deep learning based pipeline to process continuous waveforms. The package has the potential to be used for real-time earthquake monitoring to enable timely actions to mitigate the impact of seismic events. Ongoing development efforts aim to further enhance SAIPy’s performance and incorporate additional features that enhance exploration efforts, and it also would be interesting to approach the retraining of the whole package as a multi-task learning problem. A detailed description of all functions is available in a supplementary document.
期刊介绍:
Computers & Geosciences publishes high impact, original research at the interface between Computer Sciences and Geosciences. Publications should apply modern computer science paradigms, whether computational or informatics-based, to address problems in the geosciences.