Xiaoyu Xiong , Yihang Fan , Weipeng Wang , Yongzheng Wen , Zhengjun Zhang , Jingbo Sun , Ji Zhou
{"title":"双曲超材料中迪雅可诺夫极化子的大焦距平面聚焦","authors":"Xiaoyu Xiong , Yihang Fan , Weipeng Wang , Yongzheng Wen , Zhengjun Zhang , Jingbo Sun , Ji Zhou","doi":"10.1016/j.pnsc.2024.06.003","DOIUrl":null,"url":null,"abstract":"<div><p><span><span>Achieving subwavelength optical focusing is of great importance in nanophotonics<span>. However, achieving focusing with both a small focal spot size and a large focal length remains elusive so far. Here, a large focal length planar focusing device is presented, utilizing highly oriented Dyakonov polaritons in hyperbolic </span></span>metamaterial<span> with periodic silver rings as the excitation source. Experimental results show that by controlling the size of the excitation sources, the focal length can reach 6</span></span><em>λ</em><sub>0</sub> (where <em>λ</em><sub>0</sub> is the illumination wavelength), and the focal spot size can be reduced to <em>λ</em><sub>0</sub>/10. This method provides new prospects for planar polariton optical applications.</p></div>","PeriodicalId":20742,"journal":{"name":"Progress in Natural Science: Materials International","volume":"34 4","pages":"Pages 632-636"},"PeriodicalIF":4.8000,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Large focal length planar focusing of Dyakonov polaritons in hyperbolic metamaterial\",\"authors\":\"Xiaoyu Xiong , Yihang Fan , Weipeng Wang , Yongzheng Wen , Zhengjun Zhang , Jingbo Sun , Ji Zhou\",\"doi\":\"10.1016/j.pnsc.2024.06.003\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p><span><span>Achieving subwavelength optical focusing is of great importance in nanophotonics<span>. However, achieving focusing with both a small focal spot size and a large focal length remains elusive so far. Here, a large focal length planar focusing device is presented, utilizing highly oriented Dyakonov polaritons in hyperbolic </span></span>metamaterial<span> with periodic silver rings as the excitation source. Experimental results show that by controlling the size of the excitation sources, the focal length can reach 6</span></span><em>λ</em><sub>0</sub> (where <em>λ</em><sub>0</sub> is the illumination wavelength), and the focal spot size can be reduced to <em>λ</em><sub>0</sub>/10. This method provides new prospects for planar polariton optical applications.</p></div>\",\"PeriodicalId\":20742,\"journal\":{\"name\":\"Progress in Natural Science: Materials International\",\"volume\":\"34 4\",\"pages\":\"Pages 632-636\"},\"PeriodicalIF\":4.8000,\"publicationDate\":\"2024-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Progress in Natural Science: Materials International\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1002007124001400\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Progress in Natural Science: Materials International","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1002007124001400","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
Large focal length planar focusing of Dyakonov polaritons in hyperbolic metamaterial
Achieving subwavelength optical focusing is of great importance in nanophotonics. However, achieving focusing with both a small focal spot size and a large focal length remains elusive so far. Here, a large focal length planar focusing device is presented, utilizing highly oriented Dyakonov polaritons in hyperbolic metamaterial with periodic silver rings as the excitation source. Experimental results show that by controlling the size of the excitation sources, the focal length can reach 6λ0 (where λ0 is the illumination wavelength), and the focal spot size can be reduced to λ0/10. This method provides new prospects for planar polariton optical applications.
期刊介绍:
Progress in Natural Science: Materials International provides scientists and engineers throughout the world with a central vehicle for the exchange and dissemination of basic theoretical studies and applied research of advanced materials. The emphasis is placed on original research, both analytical and experimental, which is of permanent interest to engineers and scientists, covering all aspects of new materials and technologies, such as, energy and environmental materials; advanced structural materials; advanced transportation materials, functional and electronic materials; nano-scale and amorphous materials; health and biological materials; materials modeling and simulation; materials characterization; and so on. The latest research achievements and innovative papers in basic theoretical studies and applied research of material science will be carefully selected and promptly reported. Thus, the aim of this Journal is to serve the global materials science and technology community with the latest research findings.
As a service to readers, an international bibliography of recent publications in advanced materials is published bimonthly.