碳纤维增强聚合物制造中的机器人操作应用--一项调查

IF 5.3 Q2 MATERIALS SCIENCE, COMPOSITES Composites Part C Open Access Pub Date : 2024-08-08 DOI:10.1016/j.jcomc.2024.100503
Wajih Ahmed Khan , Muhammad Umar Anjum , Harris Khan , Amir Hamza , Hamid Jabbar , Tayyab Zafar , Ali R. Ansari , Raheel Nawaz
{"title":"碳纤维增强聚合物制造中的机器人操作应用--一项调查","authors":"Wajih Ahmed Khan ,&nbsp;Muhammad Umar Anjum ,&nbsp;Harris Khan ,&nbsp;Amir Hamza ,&nbsp;Hamid Jabbar ,&nbsp;Tayyab Zafar ,&nbsp;Ali R. Ansari ,&nbsp;Raheel Nawaz","doi":"10.1016/j.jcomc.2024.100503","DOIUrl":null,"url":null,"abstract":"<div><p>With the rapid advancement in the manufacturing industry, there has been a massive rise in the demand for products made of fiber reinforced polymer composites as they have high stiffness and strength to weight ratios. They are widely used in the manufacturing of parts in aerospace and automobile industry. The manual draping process of prepreg on the mold is time intensive and requires a highly skilled worker to perform the task. Various techniques have been designed to automate the process of composite parts manufacturing using automated fiber placement (AFP), automated tape laying (ATL) and automated plies layup. These methods use robots equipped with an end effector designed to drape the prepreg. The system utilizes both single and multi-robot cells for the process of composites manufacturing. The aim of this paper is to review the techniques and strategies employed for conforming and grasping of prepreg. The paper will also delve into the process parameters that influence the composites manufacturing process and investigate the impact of correct and inaccurate selection of process parameters on the final product. The paper will also discuss the limitations, challenges and future prospects for automated composite part manufacturing.</p></div>","PeriodicalId":34525,"journal":{"name":"Composites Part C Open Access","volume":"15 ","pages":"Article 100503"},"PeriodicalIF":5.3000,"publicationDate":"2024-08-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2666682024000720/pdfft?md5=e50034e1dd532ad2ff1dadcecd253198&pid=1-s2.0-S2666682024000720-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Application of robotic manipulation for carbon fiber reinforced polymers manufacturing- A survey\",\"authors\":\"Wajih Ahmed Khan ,&nbsp;Muhammad Umar Anjum ,&nbsp;Harris Khan ,&nbsp;Amir Hamza ,&nbsp;Hamid Jabbar ,&nbsp;Tayyab Zafar ,&nbsp;Ali R. Ansari ,&nbsp;Raheel Nawaz\",\"doi\":\"10.1016/j.jcomc.2024.100503\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>With the rapid advancement in the manufacturing industry, there has been a massive rise in the demand for products made of fiber reinforced polymer composites as they have high stiffness and strength to weight ratios. They are widely used in the manufacturing of parts in aerospace and automobile industry. The manual draping process of prepreg on the mold is time intensive and requires a highly skilled worker to perform the task. Various techniques have been designed to automate the process of composite parts manufacturing using automated fiber placement (AFP), automated tape laying (ATL) and automated plies layup. These methods use robots equipped with an end effector designed to drape the prepreg. The system utilizes both single and multi-robot cells for the process of composites manufacturing. The aim of this paper is to review the techniques and strategies employed for conforming and grasping of prepreg. The paper will also delve into the process parameters that influence the composites manufacturing process and investigate the impact of correct and inaccurate selection of process parameters on the final product. The paper will also discuss the limitations, challenges and future prospects for automated composite part manufacturing.</p></div>\",\"PeriodicalId\":34525,\"journal\":{\"name\":\"Composites Part C Open Access\",\"volume\":\"15 \",\"pages\":\"Article 100503\"},\"PeriodicalIF\":5.3000,\"publicationDate\":\"2024-08-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2666682024000720/pdfft?md5=e50034e1dd532ad2ff1dadcecd253198&pid=1-s2.0-S2666682024000720-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Composites Part C Open Access\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2666682024000720\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, COMPOSITES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Composites Part C Open Access","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666682024000720","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, COMPOSITES","Score":null,"Total":0}
引用次数: 0

摘要

随着制造业的快速发展,对纤维增强聚合物复合材料制成的产品的需求大幅增加,因为它们具有很高的刚度和强度重量比。它们被广泛应用于航空航天和汽车工业部件的制造。在模具上手工铺放预浸料的过程非常耗时,需要技术熟练的工人来完成。目前已设计出多种技术,利用自动纤维铺放(AFP)、自动胶带铺放(ATL)和自动层铺来实现复合材料零件制造过程的自动化。这些方法使用的机器人配备了专门用于铺放预浸料的末端效应器。该系统利用单机器人和多机器人单元进行复合材料制造。本文旨在回顾预浸料保形和抓取所采用的技术和策略。本文还将深入探讨影响复合材料制造过程的工艺参数,并研究正确和不正确选择工艺参数对最终产品的影响。论文还将讨论自动化复合材料部件制造的局限性、挑战和未来前景。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Application of robotic manipulation for carbon fiber reinforced polymers manufacturing- A survey

With the rapid advancement in the manufacturing industry, there has been a massive rise in the demand for products made of fiber reinforced polymer composites as they have high stiffness and strength to weight ratios. They are widely used in the manufacturing of parts in aerospace and automobile industry. The manual draping process of prepreg on the mold is time intensive and requires a highly skilled worker to perform the task. Various techniques have been designed to automate the process of composite parts manufacturing using automated fiber placement (AFP), automated tape laying (ATL) and automated plies layup. These methods use robots equipped with an end effector designed to drape the prepreg. The system utilizes both single and multi-robot cells for the process of composites manufacturing. The aim of this paper is to review the techniques and strategies employed for conforming and grasping of prepreg. The paper will also delve into the process parameters that influence the composites manufacturing process and investigate the impact of correct and inaccurate selection of process parameters on the final product. The paper will also discuss the limitations, challenges and future prospects for automated composite part manufacturing.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Composites Part C Open Access
Composites Part C Open Access Engineering-Mechanical Engineering
CiteScore
8.60
自引率
2.40%
发文量
96
审稿时长
55 days
期刊最新文献
Hybrid lattice structure with micro graphite filler manufactured via additive manufacturing and growth foam polyurethane Cure-induced residual stresses and viscoelastic effects in repaired wind turbine blades: Analytical-numerical investigation Bioinspired surface modification of mussel shells and their application as a biogenic filler in polypropylene composites A review of repairing heat-damaged RC beams using externally bonded- and near-surface mounted-CFRP composites Comparative analysis of delamination resistance in CFRP laminates interleaved by thermoplastic nanoparticle: Evaluating toughening mechanisms in modes I and II
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1