Changjun Han , Yunhui Wang , Zaichi Wang , Zhi Dong , Kai Li , Changhui Song , Chao Cai , Xingchen Yan , Yongqiang Yang , Di Wang
{"title":"通过晶格启发设计策略增强基于添加制造的 voronoi 架构超材料的机械性能","authors":"Changjun Han , Yunhui Wang , Zaichi Wang , Zhi Dong , Kai Li , Changhui Song , Chao Cai , Xingchen Yan , Yongqiang Yang , Di Wang","doi":"10.1016/j.ijmachtools.2024.104199","DOIUrl":null,"url":null,"abstract":"<div><p>Voronoi-based architected metamaterials have gained significant recognition as promising candidates for bone defect repair implants. However, the demanding requirements for reliable and adjustable load-bearing capacity pose challenges in applying irregular Voronoi-based architected metamaterials in implant applications. In this study, we propose a lattice-inspired design methodology for these metamaterials, enabling precise control over topologies and porosities to enhance their mechanical properties. We demonstrate the influence of unit cell topology on the printability, mechanical properties, and permeability of lattice-inspired Voronoi-based metamaterials (LIVMs) fabricated via laser powder bed fusion (LPBF) additive manufacturing. The LPBF-printed LIVMs exhibited yield strengths ranging from 3.35 to 17.59 MPa and specific energy absorption ranging from 3.81 to 14.29 J/g. Through finite element modeling and experimentation, we show that the deformation behavior of LIVMs with various topologies plays a crucial role in enhancing mechanical performance through mechanisms such as homogeneous load transfer between unit cells and multistage-contact strengthening within a unit cell. Additionally, we analyze the impact of unit cell type and porosity on the mass-transport behavior of LIVMs using computational fluid dynamics simulations. The LIVMs achieved experimental permeability values ranging from 3.88 × 10<sup>−9</sup> to 16.83 × 10<sup>−9</sup> m<sup>2</sup> (consistent with trabecular bones), indicating that multiple fluid flow channels can be utilized to enhance mass transport by distributing flow pressure and increasing fluid mobility. The proposed design method effectively achieves a favorable combination of superior mechanical properties and tunable permeability in Voronoi-based architected metamaterials. These findings provide valuable theoretical guidance for the development of architected metamaterials for bone implant applications.</p></div>","PeriodicalId":14011,"journal":{"name":"International Journal of Machine Tools & Manufacture","volume":"202 ","pages":"Article 104199"},"PeriodicalIF":14.0000,"publicationDate":"2024-08-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Enhancing mechanical properties of additively manufactured voronoi-based architected metamaterials via a lattice-inspired design strategy\",\"authors\":\"Changjun Han , Yunhui Wang , Zaichi Wang , Zhi Dong , Kai Li , Changhui Song , Chao Cai , Xingchen Yan , Yongqiang Yang , Di Wang\",\"doi\":\"10.1016/j.ijmachtools.2024.104199\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Voronoi-based architected metamaterials have gained significant recognition as promising candidates for bone defect repair implants. However, the demanding requirements for reliable and adjustable load-bearing capacity pose challenges in applying irregular Voronoi-based architected metamaterials in implant applications. In this study, we propose a lattice-inspired design methodology for these metamaterials, enabling precise control over topologies and porosities to enhance their mechanical properties. We demonstrate the influence of unit cell topology on the printability, mechanical properties, and permeability of lattice-inspired Voronoi-based metamaterials (LIVMs) fabricated via laser powder bed fusion (LPBF) additive manufacturing. The LPBF-printed LIVMs exhibited yield strengths ranging from 3.35 to 17.59 MPa and specific energy absorption ranging from 3.81 to 14.29 J/g. Through finite element modeling and experimentation, we show that the deformation behavior of LIVMs with various topologies plays a crucial role in enhancing mechanical performance through mechanisms such as homogeneous load transfer between unit cells and multistage-contact strengthening within a unit cell. Additionally, we analyze the impact of unit cell type and porosity on the mass-transport behavior of LIVMs using computational fluid dynamics simulations. The LIVMs achieved experimental permeability values ranging from 3.88 × 10<sup>−9</sup> to 16.83 × 10<sup>−9</sup> m<sup>2</sup> (consistent with trabecular bones), indicating that multiple fluid flow channels can be utilized to enhance mass transport by distributing flow pressure and increasing fluid mobility. The proposed design method effectively achieves a favorable combination of superior mechanical properties and tunable permeability in Voronoi-based architected metamaterials. These findings provide valuable theoretical guidance for the development of architected metamaterials for bone implant applications.</p></div>\",\"PeriodicalId\":14011,\"journal\":{\"name\":\"International Journal of Machine Tools & Manufacture\",\"volume\":\"202 \",\"pages\":\"Article 104199\"},\"PeriodicalIF\":14.0000,\"publicationDate\":\"2024-08-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Machine Tools & Manufacture\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0890695524000853\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, MANUFACTURING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Machine Tools & Manufacture","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0890695524000853","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MANUFACTURING","Score":null,"Total":0}
Enhancing mechanical properties of additively manufactured voronoi-based architected metamaterials via a lattice-inspired design strategy
Voronoi-based architected metamaterials have gained significant recognition as promising candidates for bone defect repair implants. However, the demanding requirements for reliable and adjustable load-bearing capacity pose challenges in applying irregular Voronoi-based architected metamaterials in implant applications. In this study, we propose a lattice-inspired design methodology for these metamaterials, enabling precise control over topologies and porosities to enhance their mechanical properties. We demonstrate the influence of unit cell topology on the printability, mechanical properties, and permeability of lattice-inspired Voronoi-based metamaterials (LIVMs) fabricated via laser powder bed fusion (LPBF) additive manufacturing. The LPBF-printed LIVMs exhibited yield strengths ranging from 3.35 to 17.59 MPa and specific energy absorption ranging from 3.81 to 14.29 J/g. Through finite element modeling and experimentation, we show that the deformation behavior of LIVMs with various topologies plays a crucial role in enhancing mechanical performance through mechanisms such as homogeneous load transfer between unit cells and multistage-contact strengthening within a unit cell. Additionally, we analyze the impact of unit cell type and porosity on the mass-transport behavior of LIVMs using computational fluid dynamics simulations. The LIVMs achieved experimental permeability values ranging from 3.88 × 10−9 to 16.83 × 10−9 m2 (consistent with trabecular bones), indicating that multiple fluid flow channels can be utilized to enhance mass transport by distributing flow pressure and increasing fluid mobility. The proposed design method effectively achieves a favorable combination of superior mechanical properties and tunable permeability in Voronoi-based architected metamaterials. These findings provide valuable theoretical guidance for the development of architected metamaterials for bone implant applications.
期刊介绍:
The International Journal of Machine Tools and Manufacture is dedicated to advancing scientific comprehension of the fundamental mechanics involved in processes and machines utilized in the manufacturing of engineering components. While the primary focus is on metals, the journal also explores applications in composites, ceramics, and other structural or functional materials. The coverage includes a diverse range of topics:
- Essential mechanics of processes involving material removal, accretion, and deformation, encompassing solid, semi-solid, or particulate forms.
- Significant scientific advancements in existing or new processes and machines.
- In-depth characterization of workpiece materials (structure/surfaces) through advanced techniques (e.g., SEM, EDS, TEM, EBSD, AES, Raman spectroscopy) to unveil new phenomenological aspects governing manufacturing processes.
- Tool design, utilization, and comprehensive studies of failure mechanisms.
- Innovative concepts of machine tools, fixtures, and tool holders supported by modeling and demonstrations relevant to manufacturing processes within the journal's scope.
- Novel scientific contributions exploring interactions between the machine tool, control system, software design, and processes.
- Studies elucidating specific mechanisms governing niche processes (e.g., ultra-high precision, nano/atomic level manufacturing with either mechanical or non-mechanical "tools").
- Innovative approaches, underpinned by thorough scientific analysis, addressing emerging or breakthrough processes (e.g., bio-inspired manufacturing) and/or applications (e.g., ultra-high precision optics).