欧拉多相模型混合指数的尺度依赖性研究

IF 3.5 3区 工程技术 Q2 ENGINEERING, CHEMICAL AIChE Journal Pub Date : 2024-08-22 DOI:10.1002/aic.18589
Barlev R. Nagawkar, Alberto Passalacqua, Shankar Subramaniam
{"title":"欧拉多相模型混合指数的尺度依赖性研究","authors":"Barlev R. Nagawkar,&nbsp;Alberto Passalacqua,&nbsp;Shankar Subramaniam","doi":"10.1002/aic.18589","DOIUrl":null,"url":null,"abstract":"<p>Mixing can vary based on the scale at which the system is observed, and a mixing index that can capture the features at different length scales is desirable. In this article, we analyze the scale dependence of the mixing indices developed for Eulerian multiphase models. Relevant length scales are distinguished by filtering solid fraction fields. The scale-dependence study is first done on manufactured fields of solid fraction to assess the performance of the mixing indices. The study is extended to a two-dimensional CFD simulation of the segregation of a bidisperse gas–solid mixture. The local mixing index performs well in capturing the spatial variation of mixing at different scales. The scale dependence of two global mixing indices is considered in the study, where the state of mixing is defined based on statistical measures. We demonstrate that the choice of measures influences the sensitivity of mixing indices to mixing at different scales.</p>","PeriodicalId":120,"journal":{"name":"AIChE Journal","volume":"70 12","pages":""},"PeriodicalIF":3.5000,"publicationDate":"2024-08-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/aic.18589","citationCount":"0","resultStr":"{\"title\":\"A study on the scale dependence of mixing indices for Eulerian multiphase models\",\"authors\":\"Barlev R. Nagawkar,&nbsp;Alberto Passalacqua,&nbsp;Shankar Subramaniam\",\"doi\":\"10.1002/aic.18589\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Mixing can vary based on the scale at which the system is observed, and a mixing index that can capture the features at different length scales is desirable. In this article, we analyze the scale dependence of the mixing indices developed for Eulerian multiphase models. Relevant length scales are distinguished by filtering solid fraction fields. The scale-dependence study is first done on manufactured fields of solid fraction to assess the performance of the mixing indices. The study is extended to a two-dimensional CFD simulation of the segregation of a bidisperse gas–solid mixture. The local mixing index performs well in capturing the spatial variation of mixing at different scales. The scale dependence of two global mixing indices is considered in the study, where the state of mixing is defined based on statistical measures. We demonstrate that the choice of measures influences the sensitivity of mixing indices to mixing at different scales.</p>\",\"PeriodicalId\":120,\"journal\":{\"name\":\"AIChE Journal\",\"volume\":\"70 12\",\"pages\":\"\"},\"PeriodicalIF\":3.5000,\"publicationDate\":\"2024-08-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/aic.18589\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"AIChE Journal\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/aic.18589\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, CHEMICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"AIChE Journal","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/aic.18589","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0

摘要

混合会根据观测系统的尺度而变化,因此需要一种能够捕捉不同长度尺度特征的混合指数。本文分析了为欧拉多相模型开发的混合指数的尺度依赖性。通过过滤固体分数场来区分相关长度尺度。尺度依赖性研究首先在制造的固体分数场上进行,以评估混合指数的性能。研究扩展到双分散气固混合物分离的二维 CFD 模拟。局部混合指数在捕捉不同尺度混合的空间变化方面表现良好。研究中考虑了两个全局混合指数的尺度依赖性,其中混合状态是根据统计量定义的。我们证明,统计量的选择会影响混合指数对不同尺度混合的敏感性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A study on the scale dependence of mixing indices for Eulerian multiphase models

Mixing can vary based on the scale at which the system is observed, and a mixing index that can capture the features at different length scales is desirable. In this article, we analyze the scale dependence of the mixing indices developed for Eulerian multiphase models. Relevant length scales are distinguished by filtering solid fraction fields. The scale-dependence study is first done on manufactured fields of solid fraction to assess the performance of the mixing indices. The study is extended to a two-dimensional CFD simulation of the segregation of a bidisperse gas–solid mixture. The local mixing index performs well in capturing the spatial variation of mixing at different scales. The scale dependence of two global mixing indices is considered in the study, where the state of mixing is defined based on statistical measures. We demonstrate that the choice of measures influences the sensitivity of mixing indices to mixing at different scales.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
AIChE Journal
AIChE Journal 工程技术-工程:化工
CiteScore
7.10
自引率
10.80%
发文量
411
审稿时长
3.6 months
期刊介绍: The AIChE Journal is the premier research monthly in chemical engineering and related fields. This peer-reviewed and broad-based journal reports on the most important and latest technological advances in core areas of chemical engineering as well as in other relevant engineering disciplines. To keep abreast with the progressive outlook of the profession, the Journal has been expanding the scope of its editorial contents to include such fast developing areas as biotechnology, electrochemical engineering, and environmental engineering. The AIChE Journal is indeed the global communications vehicle for the world-renowned researchers to exchange top-notch research findings with one another. Subscribing to the AIChE Journal is like having immediate access to nine topical journals in the field. Articles are categorized according to the following topical areas: Biomolecular Engineering, Bioengineering, Biochemicals, Biofuels, and Food Inorganic Materials: Synthesis and Processing Particle Technology and Fluidization Process Systems Engineering Reaction Engineering, Kinetics and Catalysis Separations: Materials, Devices and Processes Soft Materials: Synthesis, Processing and Products Thermodynamics and Molecular-Scale Phenomena Transport Phenomena and Fluid Mechanics.
期刊最新文献
Stabilization of cuσ+ via strong Cu-O-Si interface for efficient electrocatalytic acetylene semi-hydrogenation Simultaneous optimization of simulated moving bed adsorption and distillation for 2,3-butanediol recovery A highly integrated ceramic membrane-based reactor for intensifying the biomass gasification to clean syngas Boosting electrocatalytic alcohol oxidation: Efficient d–π interaction with modified TEMPO and bioinspired structure Doping Si/O to enhance interfacial occupancy of demulsifiers for low-carbon breaking of water-in-heavy oil emulsions
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1