Phillip I. Johnson, Garrett N. Gregory, Brandon C. Bukowski
{"title":"尺寸、亲水性和氟含量对 NU-1000 中全氟烷基吸附的热力学影响","authors":"Phillip I. Johnson, Garrett N. Gregory, Brandon C. Bukowski","doi":"10.1002/aic.18579","DOIUrl":null,"url":null,"abstract":"<p>The molecular mechanisms that drive adsorption are critical for engineering new adsorbents to capture environmental contaminants, such as perfluoroalkyl substances (PFAS). Metal–organic frameworks (MOFs) have been shown to adsorb some classes of PFAS, yet a fundamental understanding of how PFAS identity and water competition affect adsorption capacity is unknown. Here, grand canonical Monte Carlo simulations of perfluoroalkanoic acids (PFAAs) adsorption in the MOF NU-1000 were performed with coadsorbed water and varying carbon chain length sizes to interrogate how PFAS structure affects adsorption capacity. We found that larger PFAAs adsorb favorably into NU-1000 than shorter chain PFAAs due to the formation of pore-filling aggregates that stabilize anionic adsorption to the node. Due to their size and hydrophilicity, shorter chains tend to limit interactions with the adsorbent. These insights offer directions for developing novel materials that promote aggregate formation to capture and retain a wider set of PFAS from aqueous solutions.</p>","PeriodicalId":120,"journal":{"name":"AIChE Journal","volume":"70 12","pages":""},"PeriodicalIF":3.5000,"publicationDate":"2024-08-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Thermodynamic implications of size, hydrophilicity, and fluorine content on perfluoroalkyl adsorption in NU-1000\",\"authors\":\"Phillip I. Johnson, Garrett N. Gregory, Brandon C. Bukowski\",\"doi\":\"10.1002/aic.18579\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The molecular mechanisms that drive adsorption are critical for engineering new adsorbents to capture environmental contaminants, such as perfluoroalkyl substances (PFAS). Metal–organic frameworks (MOFs) have been shown to adsorb some classes of PFAS, yet a fundamental understanding of how PFAS identity and water competition affect adsorption capacity is unknown. Here, grand canonical Monte Carlo simulations of perfluoroalkanoic acids (PFAAs) adsorption in the MOF NU-1000 were performed with coadsorbed water and varying carbon chain length sizes to interrogate how PFAS structure affects adsorption capacity. We found that larger PFAAs adsorb favorably into NU-1000 than shorter chain PFAAs due to the formation of pore-filling aggregates that stabilize anionic adsorption to the node. Due to their size and hydrophilicity, shorter chains tend to limit interactions with the adsorbent. These insights offer directions for developing novel materials that promote aggregate formation to capture and retain a wider set of PFAS from aqueous solutions.</p>\",\"PeriodicalId\":120,\"journal\":{\"name\":\"AIChE Journal\",\"volume\":\"70 12\",\"pages\":\"\"},\"PeriodicalIF\":3.5000,\"publicationDate\":\"2024-08-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"AIChE Journal\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/aic.18579\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, CHEMICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"AIChE Journal","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/aic.18579","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
Thermodynamic implications of size, hydrophilicity, and fluorine content on perfluoroalkyl adsorption in NU-1000
The molecular mechanisms that drive adsorption are critical for engineering new adsorbents to capture environmental contaminants, such as perfluoroalkyl substances (PFAS). Metal–organic frameworks (MOFs) have been shown to adsorb some classes of PFAS, yet a fundamental understanding of how PFAS identity and water competition affect adsorption capacity is unknown. Here, grand canonical Monte Carlo simulations of perfluoroalkanoic acids (PFAAs) adsorption in the MOF NU-1000 were performed with coadsorbed water and varying carbon chain length sizes to interrogate how PFAS structure affects adsorption capacity. We found that larger PFAAs adsorb favorably into NU-1000 than shorter chain PFAAs due to the formation of pore-filling aggregates that stabilize anionic adsorption to the node. Due to their size and hydrophilicity, shorter chains tend to limit interactions with the adsorbent. These insights offer directions for developing novel materials that promote aggregate formation to capture and retain a wider set of PFAS from aqueous solutions.
期刊介绍:
The AIChE Journal is the premier research monthly in chemical engineering and related fields. This peer-reviewed and broad-based journal reports on the most important and latest technological advances in core areas of chemical engineering as well as in other relevant engineering disciplines. To keep abreast with the progressive outlook of the profession, the Journal has been expanding the scope of its editorial contents to include such fast developing areas as biotechnology, electrochemical engineering, and environmental engineering.
The AIChE Journal is indeed the global communications vehicle for the world-renowned researchers to exchange top-notch research findings with one another. Subscribing to the AIChE Journal is like having immediate access to nine topical journals in the field.
Articles are categorized according to the following topical areas:
Biomolecular Engineering, Bioengineering, Biochemicals, Biofuels, and Food
Inorganic Materials: Synthesis and Processing
Particle Technology and Fluidization
Process Systems Engineering
Reaction Engineering, Kinetics and Catalysis
Separations: Materials, Devices and Processes
Soft Materials: Synthesis, Processing and Products
Thermodynamics and Molecular-Scale Phenomena
Transport Phenomena and Fluid Mechanics.