Guiyao Zhou, Nico Eisenhauer, Cesar Terrer, David J. Eldridge, Huimin Duan, Emilio Guirado, Miguel Berdugo, Lingyan Zhou, Shengen Liu, Xuhui Zhou, Manuel Delgado-Baquerizo
{"title":"越来越多的环境压力削弱了生态系统服务对全球变化的抵抗力","authors":"Guiyao Zhou, Nico Eisenhauer, Cesar Terrer, David J. Eldridge, Huimin Duan, Emilio Guirado, Miguel Berdugo, Lingyan Zhou, Shengen Liu, Xuhui Zhou, Manuel Delgado-Baquerizo","doi":"10.1038/s41561-024-01518-x","DOIUrl":null,"url":null,"abstract":"Terrestrial ecosystems are subjected to multiple global changes simultaneously. Yet, how an increasing number of global changes impact the resistance of ecosystems to global change remains virtually unknown. Here we present a global synthesis including 14,000 observations from seven ecosystem services (functions and biodiversity), as well as data from a 15-year field experiment. We found that the resistance of multiple ecosystem services to global change declines with an increasing number of global change factors, particularly after long-term exposure to these factors. Biodiversity had a higher resistance to multiple global changes compared with ecosystem functions. Our work suggests that we need to consider the combined effects of multiple global changes on the magnitude and resistance of ecosystem services worldwide, as ecosystem responses will be enhanced by the number of environmental stressors and time of exposure. Increasing the number of global changes reduces the resistance of ecosystem services worldwide, according to an analysis of global available observational data and field experiments.","PeriodicalId":19053,"journal":{"name":"Nature Geoscience","volume":"17 9","pages":"882-888"},"PeriodicalIF":15.7000,"publicationDate":"2024-08-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Resistance of ecosystem services to global change weakened by increasing number of environmental stressors\",\"authors\":\"Guiyao Zhou, Nico Eisenhauer, Cesar Terrer, David J. Eldridge, Huimin Duan, Emilio Guirado, Miguel Berdugo, Lingyan Zhou, Shengen Liu, Xuhui Zhou, Manuel Delgado-Baquerizo\",\"doi\":\"10.1038/s41561-024-01518-x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Terrestrial ecosystems are subjected to multiple global changes simultaneously. Yet, how an increasing number of global changes impact the resistance of ecosystems to global change remains virtually unknown. Here we present a global synthesis including 14,000 observations from seven ecosystem services (functions and biodiversity), as well as data from a 15-year field experiment. We found that the resistance of multiple ecosystem services to global change declines with an increasing number of global change factors, particularly after long-term exposure to these factors. Biodiversity had a higher resistance to multiple global changes compared with ecosystem functions. Our work suggests that we need to consider the combined effects of multiple global changes on the magnitude and resistance of ecosystem services worldwide, as ecosystem responses will be enhanced by the number of environmental stressors and time of exposure. Increasing the number of global changes reduces the resistance of ecosystem services worldwide, according to an analysis of global available observational data and field experiments.\",\"PeriodicalId\":19053,\"journal\":{\"name\":\"Nature Geoscience\",\"volume\":\"17 9\",\"pages\":\"882-888\"},\"PeriodicalIF\":15.7000,\"publicationDate\":\"2024-08-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nature Geoscience\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://www.nature.com/articles/s41561-024-01518-x\",\"RegionNum\":1,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"GEOSCIENCES, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Geoscience","FirstCategoryId":"89","ListUrlMain":"https://www.nature.com/articles/s41561-024-01518-x","RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GEOSCIENCES, MULTIDISCIPLINARY","Score":null,"Total":0}
Resistance of ecosystem services to global change weakened by increasing number of environmental stressors
Terrestrial ecosystems are subjected to multiple global changes simultaneously. Yet, how an increasing number of global changes impact the resistance of ecosystems to global change remains virtually unknown. Here we present a global synthesis including 14,000 observations from seven ecosystem services (functions and biodiversity), as well as data from a 15-year field experiment. We found that the resistance of multiple ecosystem services to global change declines with an increasing number of global change factors, particularly after long-term exposure to these factors. Biodiversity had a higher resistance to multiple global changes compared with ecosystem functions. Our work suggests that we need to consider the combined effects of multiple global changes on the magnitude and resistance of ecosystem services worldwide, as ecosystem responses will be enhanced by the number of environmental stressors and time of exposure. Increasing the number of global changes reduces the resistance of ecosystem services worldwide, according to an analysis of global available observational data and field experiments.
期刊介绍:
Nature Geoscience is a monthly interdisciplinary journal that gathers top-tier research spanning Earth Sciences and related fields.
The journal covers all geoscience disciplines, including fieldwork, modeling, and theoretical studies.
Topics include atmospheric science, biogeochemistry, climate science, geobiology, geochemistry, geoinformatics, remote sensing, geology, geomagnetism, paleomagnetism, geomorphology, geophysics, glaciology, hydrology, limnology, mineralogy, oceanography, paleontology, paleoclimatology, paleoceanography, petrology, planetary science, seismology, space physics, tectonics, and volcanology.
Nature Geoscience upholds its commitment to publishing significant, high-quality Earth Sciences research through fair, rapid, and rigorous peer review, overseen by a team of full-time professional editors.