{"title":"细胞粘附不相容是种间嵌合的障碍","authors":"Emily Ballard, Masahiro Sakurai, Leqian Yu, Lizhong Liu, Seiya Oura, Jia Huang, Jun Wu","doi":"10.1016/j.stem.2024.07.010","DOIUrl":null,"url":null,"abstract":"<p>Interspecies blastocyst complementation holds great potential to address the global shortage of transplantable organs by growing human organs in animals. However, a major challenge in this approach is the limited chimerism of human cells in evolutionarily distant animal hosts due to various xenogeneic barriers. Here, we reveal that human pluripotent stem cells (PSCs) struggle to adhere to animal PSCs. To overcome this barrier, we developed a synthetic biology strategy that leverages nanobody-antigen interactions to enhance interspecies cell adhesion. We engineered cells to express nanobodies and their corresponding antigens on their outer membranes, significantly improving adhesion between different species’ PSCs during <em>in vitro</em> assays and increasing the chimerism of human PSCs in mouse embryos. Studying and manipulating interspecies pluripotent cell adhesion will provide valuable insights into cell interaction dynamics during chimera formation and early embryogenesis.</p>","PeriodicalId":9665,"journal":{"name":"Cell stem cell","volume":"18 1","pages":""},"PeriodicalIF":19.8000,"publicationDate":"2024-08-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Incompatibility in cell adhesion constitutes a barrier to interspecies chimerism\",\"authors\":\"Emily Ballard, Masahiro Sakurai, Leqian Yu, Lizhong Liu, Seiya Oura, Jia Huang, Jun Wu\",\"doi\":\"10.1016/j.stem.2024.07.010\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Interspecies blastocyst complementation holds great potential to address the global shortage of transplantable organs by growing human organs in animals. However, a major challenge in this approach is the limited chimerism of human cells in evolutionarily distant animal hosts due to various xenogeneic barriers. Here, we reveal that human pluripotent stem cells (PSCs) struggle to adhere to animal PSCs. To overcome this barrier, we developed a synthetic biology strategy that leverages nanobody-antigen interactions to enhance interspecies cell adhesion. We engineered cells to express nanobodies and their corresponding antigens on their outer membranes, significantly improving adhesion between different species’ PSCs during <em>in vitro</em> assays and increasing the chimerism of human PSCs in mouse embryos. Studying and manipulating interspecies pluripotent cell adhesion will provide valuable insights into cell interaction dynamics during chimera formation and early embryogenesis.</p>\",\"PeriodicalId\":9665,\"journal\":{\"name\":\"Cell stem cell\",\"volume\":\"18 1\",\"pages\":\"\"},\"PeriodicalIF\":19.8000,\"publicationDate\":\"2024-08-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cell stem cell\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1016/j.stem.2024.07.010\",\"RegionNum\":1,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CELL & TISSUE ENGINEERING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cell stem cell","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/j.stem.2024.07.010","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CELL & TISSUE ENGINEERING","Score":null,"Total":0}
Incompatibility in cell adhesion constitutes a barrier to interspecies chimerism
Interspecies blastocyst complementation holds great potential to address the global shortage of transplantable organs by growing human organs in animals. However, a major challenge in this approach is the limited chimerism of human cells in evolutionarily distant animal hosts due to various xenogeneic barriers. Here, we reveal that human pluripotent stem cells (PSCs) struggle to adhere to animal PSCs. To overcome this barrier, we developed a synthetic biology strategy that leverages nanobody-antigen interactions to enhance interspecies cell adhesion. We engineered cells to express nanobodies and their corresponding antigens on their outer membranes, significantly improving adhesion between different species’ PSCs during in vitro assays and increasing the chimerism of human PSCs in mouse embryos. Studying and manipulating interspecies pluripotent cell adhesion will provide valuable insights into cell interaction dynamics during chimera formation and early embryogenesis.
期刊介绍:
Cell Stem Cell is a comprehensive journal covering the entire spectrum of stem cell biology. It encompasses various topics, including embryonic stem cells, pluripotency, germline stem cells, tissue-specific stem cells, differentiation, epigenetics, genomics, cancer stem cells, stem cell niches, disease models, nuclear transfer technology, bioengineering, drug discovery, in vivo imaging, therapeutic applications, regenerative medicine, clinical insights, research policies, ethical considerations, and technical innovations. The journal welcomes studies from any model system providing insights into stem cell biology, with a focus on human stem cells. It publishes research reports of significant importance, along with review and analysis articles covering diverse aspects of stem cell research.