{"title":"BCNet:通过结构引导表征学习进行支气管分类","authors":"Wenhao Huang, Haifan Gong, Huan Zhang, Yu Wang, Xiang Wan, Guanbin Li, Haofeng Li, Hong Shen","doi":"10.1109/TMI.2024.3448468","DOIUrl":null,"url":null,"abstract":"<p><p>CT-based bronchial tree analysis is a key step for the diagnosis of lung and airway diseases. However, the topology of bronchial trees varies across individuals, which presents a challenge to the automatic bronchus classification. To solve this issue, we propose the Bronchus Classification Network (BCNet), a structure-guided framework that exploits the segment-level topological information using point clouds to learn the voxel-level features. BCNet has two branches, a Point-Voxel Graph Neural Network (PV-GNN) for segment classification, and a Convolutional Neural Network (CNN) for voxel labeling. The two branches are simultaneously trained to learn topology-aware features for their shared backbone while it is feasible to run only the CNN branch for the inference. Therefore, BCNet maintains the same inference efficiency as its CNN baseline. Experimental results show that BCNet significantly exceeds the state-of-the-art methods by over 8.0% both on F1-score for classifying bronchus. Furthermore, we contribute BronAtlas: an open-access benchmark of bronchus imaging analysis with high-quality voxel-wise annotations of both anatomical and abnormal bronchial segments. The benchmark is available at link<sup>1</sup>.</p>","PeriodicalId":94033,"journal":{"name":"IEEE transactions on medical imaging","volume":"PP ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-08-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"BCNet: Bronchus Classification via Structure Guided Representation Learning.\",\"authors\":\"Wenhao Huang, Haifan Gong, Huan Zhang, Yu Wang, Xiang Wan, Guanbin Li, Haofeng Li, Hong Shen\",\"doi\":\"10.1109/TMI.2024.3448468\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>CT-based bronchial tree analysis is a key step for the diagnosis of lung and airway diseases. However, the topology of bronchial trees varies across individuals, which presents a challenge to the automatic bronchus classification. To solve this issue, we propose the Bronchus Classification Network (BCNet), a structure-guided framework that exploits the segment-level topological information using point clouds to learn the voxel-level features. BCNet has two branches, a Point-Voxel Graph Neural Network (PV-GNN) for segment classification, and a Convolutional Neural Network (CNN) for voxel labeling. The two branches are simultaneously trained to learn topology-aware features for their shared backbone while it is feasible to run only the CNN branch for the inference. Therefore, BCNet maintains the same inference efficiency as its CNN baseline. Experimental results show that BCNet significantly exceeds the state-of-the-art methods by over 8.0% both on F1-score for classifying bronchus. Furthermore, we contribute BronAtlas: an open-access benchmark of bronchus imaging analysis with high-quality voxel-wise annotations of both anatomical and abnormal bronchial segments. The benchmark is available at link<sup>1</sup>.</p>\",\"PeriodicalId\":94033,\"journal\":{\"name\":\"IEEE transactions on medical imaging\",\"volume\":\"PP \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-08-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE transactions on medical imaging\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/TMI.2024.3448468\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE transactions on medical imaging","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/TMI.2024.3448468","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
BCNet: Bronchus Classification via Structure Guided Representation Learning.
CT-based bronchial tree analysis is a key step for the diagnosis of lung and airway diseases. However, the topology of bronchial trees varies across individuals, which presents a challenge to the automatic bronchus classification. To solve this issue, we propose the Bronchus Classification Network (BCNet), a structure-guided framework that exploits the segment-level topological information using point clouds to learn the voxel-level features. BCNet has two branches, a Point-Voxel Graph Neural Network (PV-GNN) for segment classification, and a Convolutional Neural Network (CNN) for voxel labeling. The two branches are simultaneously trained to learn topology-aware features for their shared backbone while it is feasible to run only the CNN branch for the inference. Therefore, BCNet maintains the same inference efficiency as its CNN baseline. Experimental results show that BCNet significantly exceeds the state-of-the-art methods by over 8.0% both on F1-score for classifying bronchus. Furthermore, we contribute BronAtlas: an open-access benchmark of bronchus imaging analysis with high-quality voxel-wise annotations of both anatomical and abnormal bronchial segments. The benchmark is available at link1.