BCNet:通过结构引导表征学习进行支气管分类

Wenhao Huang, Haifan Gong, Huan Zhang, Yu Wang, Xiang Wan, Guanbin Li, Haofeng Li, Hong Shen
{"title":"BCNet:通过结构引导表征学习进行支气管分类","authors":"Wenhao Huang, Haifan Gong, Huan Zhang, Yu Wang, Xiang Wan, Guanbin Li, Haofeng Li, Hong Shen","doi":"10.1109/TMI.2024.3448468","DOIUrl":null,"url":null,"abstract":"<p><p>CT-based bronchial tree analysis is a key step for the diagnosis of lung and airway diseases. However, the topology of bronchial trees varies across individuals, which presents a challenge to the automatic bronchus classification. To solve this issue, we propose the Bronchus Classification Network (BCNet), a structure-guided framework that exploits the segment-level topological information using point clouds to learn the voxel-level features. BCNet has two branches, a Point-Voxel Graph Neural Network (PV-GNN) for segment classification, and a Convolutional Neural Network (CNN) for voxel labeling. The two branches are simultaneously trained to learn topology-aware features for their shared backbone while it is feasible to run only the CNN branch for the inference. Therefore, BCNet maintains the same inference efficiency as its CNN baseline. Experimental results show that BCNet significantly exceeds the state-of-the-art methods by over 8.0% both on F1-score for classifying bronchus. Furthermore, we contribute BronAtlas: an open-access benchmark of bronchus imaging analysis with high-quality voxel-wise annotations of both anatomical and abnormal bronchial segments. The benchmark is available at link<sup>1</sup>.</p>","PeriodicalId":94033,"journal":{"name":"IEEE transactions on medical imaging","volume":"PP ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-08-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"BCNet: Bronchus Classification via Structure Guided Representation Learning.\",\"authors\":\"Wenhao Huang, Haifan Gong, Huan Zhang, Yu Wang, Xiang Wan, Guanbin Li, Haofeng Li, Hong Shen\",\"doi\":\"10.1109/TMI.2024.3448468\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>CT-based bronchial tree analysis is a key step for the diagnosis of lung and airway diseases. However, the topology of bronchial trees varies across individuals, which presents a challenge to the automatic bronchus classification. To solve this issue, we propose the Bronchus Classification Network (BCNet), a structure-guided framework that exploits the segment-level topological information using point clouds to learn the voxel-level features. BCNet has two branches, a Point-Voxel Graph Neural Network (PV-GNN) for segment classification, and a Convolutional Neural Network (CNN) for voxel labeling. The two branches are simultaneously trained to learn topology-aware features for their shared backbone while it is feasible to run only the CNN branch for the inference. Therefore, BCNet maintains the same inference efficiency as its CNN baseline. Experimental results show that BCNet significantly exceeds the state-of-the-art methods by over 8.0% both on F1-score for classifying bronchus. Furthermore, we contribute BronAtlas: an open-access benchmark of bronchus imaging analysis with high-quality voxel-wise annotations of both anatomical and abnormal bronchial segments. The benchmark is available at link<sup>1</sup>.</p>\",\"PeriodicalId\":94033,\"journal\":{\"name\":\"IEEE transactions on medical imaging\",\"volume\":\"PP \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-08-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE transactions on medical imaging\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/TMI.2024.3448468\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE transactions on medical imaging","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/TMI.2024.3448468","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

基于 CT 的支气管树分析是诊断肺部和气道疾病的关键步骤。然而,支气管树的拓扑结构因人而异,这给支气管自动分类带来了挑战。为了解决这个问题,我们提出了支气管分类网络(Bronchus Classification Network,BCNet),这是一个结构引导的框架,它利用点云的节段级拓扑信息来学习体素级特征。BCNet 有两个分支,一个是用于节段分类的点-体素图神经网络(PV-GNN),另一个是用于体素标记的卷积神经网络(CNN)。这两个分支同时接受训练,为其共享骨干学习拓扑感知特征,而只运行 CNN 分支进行推理是可行的。因此,BCNet 保持了与 CNN 基线相同的推理效率。实验结果表明,在支气管分类的 F1 分数上,BCNet 都比最先进的方法高出 8.0% 以上。此外,我们还贡献了 BronAtlas:一个开放存取的支气管成像分析基准,其中包含解剖和异常支气管段的高质量体素注释。该基准可在 link1 上获取。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
BCNet: Bronchus Classification via Structure Guided Representation Learning.

CT-based bronchial tree analysis is a key step for the diagnosis of lung and airway diseases. However, the topology of bronchial trees varies across individuals, which presents a challenge to the automatic bronchus classification. To solve this issue, we propose the Bronchus Classification Network (BCNet), a structure-guided framework that exploits the segment-level topological information using point clouds to learn the voxel-level features. BCNet has two branches, a Point-Voxel Graph Neural Network (PV-GNN) for segment classification, and a Convolutional Neural Network (CNN) for voxel labeling. The two branches are simultaneously trained to learn topology-aware features for their shared backbone while it is feasible to run only the CNN branch for the inference. Therefore, BCNet maintains the same inference efficiency as its CNN baseline. Experimental results show that BCNet significantly exceeds the state-of-the-art methods by over 8.0% both on F1-score for classifying bronchus. Furthermore, we contribute BronAtlas: an open-access benchmark of bronchus imaging analysis with high-quality voxel-wise annotations of both anatomical and abnormal bronchial segments. The benchmark is available at link1.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Building a Synthetic Vascular Model: Evaluation in an Intracranial Aneurysms Detection Scenario. FAMF-Net: Feature Alignment Mutual Attention Fusion with Region Awareness for Breast Cancer Diagnosis via Imbalanced Data. Table of Contents Corrections to “Contrastive Graph Pooling for Explainable Classification of Brain Networks” Multi-Center Fetal Brain Tissue Annotation (FeTA) Challenge 2022 Results.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1