David Nugroho , Young Jun Joo , Kwang Youn Cho , Rachadaporn Benchawattananon , Saksit Chanthai , Lei Zhu , Won-Chun Oh
{"title":"新型合成 Ti3C2 MXene/ZnO/CdSe,用于声电子和光电子触发的协同声光催化降解各种抗生素","authors":"David Nugroho , Young Jun Joo , Kwang Youn Cho , Rachadaporn Benchawattananon , Saksit Chanthai , Lei Zhu , Won-Chun Oh","doi":"10.1016/j.flatc.2024.100726","DOIUrl":null,"url":null,"abstract":"<div><p>A straightforward and precise method was employed to generate Ti<sub>3</sub>C<sub>2</sub> MXene/ZnO/CdSe photocatalysts by a simple synthesis process involving calcination at a temperature of 400 °C. Optical, structural, morphology, microstructure, and compositional properties of these catalysts were characterized. Results demonstrated that the presence of ZnO and CdSe doping sustained their existence inside the Ti<sub>3</sub>C<sub>2</sub> MXene structure. Effects of catalyst powder, pollutant powder, and different degrading methods such as sonophotocatalytic, sonocatalytic, and photocatalytic methods on various antibiotic pollutants were then compared. The degradation efficiencies of sonophotocatalytic method were found to be highly efficient, resulting of 99.99, 99.98, and 99.90 % for ciprofloxacin, amoxicillin, and ofloxacin, respectively. Analysis of scavenger effect also illustrated the deterioration of ciprofloxacin and amoxicillin, suggesting that superoxide radicals (<sup><img></sup>O<sub>2</sub><sup>−</sup>) had a substantial role in the sonophotocatalytic degradation process. Based on data obtained for ofloxacin, it was clear that the existence of holes (h<sup>+</sup> quencher) affected the deterioration of ofloxacin in the system. Ti<sub>3</sub>C<sub>2</sub> MXene/ZnO/CdSe had a performance in electrochemical sensing. Limits of detection (LODs) for ciprofloxacin, amoxicillin, and ofloxacin were 39.29, 4.49, and 13.04 ppm, respectively. Limits of quantification (LOQs) for ciprofloxacin, amoxicillin, and ofloxacin were 119, 13.61, and 39.52 ppm, respectively. Efficient degradation of pollutants using visible light can be achieved by employing straightforwardly manufactured Ti<sub>3</sub>C<sub>2</sub> MXene/ZnO/CdSe photocatalysts, making them a practical and promising option.</p></div>","PeriodicalId":316,"journal":{"name":"FlatChem","volume":"47 ","pages":"Article 100726"},"PeriodicalIF":5.9000,"publicationDate":"2024-08-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Novel synthesis of Ti3C2 MXene/ZnO/CdSe for sonoelectron and photoelectron triggered synergetic sonophotocatalytic degradation with various antibiotics\",\"authors\":\"David Nugroho , Young Jun Joo , Kwang Youn Cho , Rachadaporn Benchawattananon , Saksit Chanthai , Lei Zhu , Won-Chun Oh\",\"doi\":\"10.1016/j.flatc.2024.100726\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>A straightforward and precise method was employed to generate Ti<sub>3</sub>C<sub>2</sub> MXene/ZnO/CdSe photocatalysts by a simple synthesis process involving calcination at a temperature of 400 °C. Optical, structural, morphology, microstructure, and compositional properties of these catalysts were characterized. Results demonstrated that the presence of ZnO and CdSe doping sustained their existence inside the Ti<sub>3</sub>C<sub>2</sub> MXene structure. Effects of catalyst powder, pollutant powder, and different degrading methods such as sonophotocatalytic, sonocatalytic, and photocatalytic methods on various antibiotic pollutants were then compared. The degradation efficiencies of sonophotocatalytic method were found to be highly efficient, resulting of 99.99, 99.98, and 99.90 % for ciprofloxacin, amoxicillin, and ofloxacin, respectively. Analysis of scavenger effect also illustrated the deterioration of ciprofloxacin and amoxicillin, suggesting that superoxide radicals (<sup><img></sup>O<sub>2</sub><sup>−</sup>) had a substantial role in the sonophotocatalytic degradation process. Based on data obtained for ofloxacin, it was clear that the existence of holes (h<sup>+</sup> quencher) affected the deterioration of ofloxacin in the system. Ti<sub>3</sub>C<sub>2</sub> MXene/ZnO/CdSe had a performance in electrochemical sensing. Limits of detection (LODs) for ciprofloxacin, amoxicillin, and ofloxacin were 39.29, 4.49, and 13.04 ppm, respectively. Limits of quantification (LOQs) for ciprofloxacin, amoxicillin, and ofloxacin were 119, 13.61, and 39.52 ppm, respectively. Efficient degradation of pollutants using visible light can be achieved by employing straightforwardly manufactured Ti<sub>3</sub>C<sub>2</sub> MXene/ZnO/CdSe photocatalysts, making them a practical and promising option.</p></div>\",\"PeriodicalId\":316,\"journal\":{\"name\":\"FlatChem\",\"volume\":\"47 \",\"pages\":\"Article 100726\"},\"PeriodicalIF\":5.9000,\"publicationDate\":\"2024-08-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"FlatChem\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S245226272400120X\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"FlatChem","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S245226272400120X","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
Novel synthesis of Ti3C2 MXene/ZnO/CdSe for sonoelectron and photoelectron triggered synergetic sonophotocatalytic degradation with various antibiotics
A straightforward and precise method was employed to generate Ti3C2 MXene/ZnO/CdSe photocatalysts by a simple synthesis process involving calcination at a temperature of 400 °C. Optical, structural, morphology, microstructure, and compositional properties of these catalysts were characterized. Results demonstrated that the presence of ZnO and CdSe doping sustained their existence inside the Ti3C2 MXene structure. Effects of catalyst powder, pollutant powder, and different degrading methods such as sonophotocatalytic, sonocatalytic, and photocatalytic methods on various antibiotic pollutants were then compared. The degradation efficiencies of sonophotocatalytic method were found to be highly efficient, resulting of 99.99, 99.98, and 99.90 % for ciprofloxacin, amoxicillin, and ofloxacin, respectively. Analysis of scavenger effect also illustrated the deterioration of ciprofloxacin and amoxicillin, suggesting that superoxide radicals (O2−) had a substantial role in the sonophotocatalytic degradation process. Based on data obtained for ofloxacin, it was clear that the existence of holes (h+ quencher) affected the deterioration of ofloxacin in the system. Ti3C2 MXene/ZnO/CdSe had a performance in electrochemical sensing. Limits of detection (LODs) for ciprofloxacin, amoxicillin, and ofloxacin were 39.29, 4.49, and 13.04 ppm, respectively. Limits of quantification (LOQs) for ciprofloxacin, amoxicillin, and ofloxacin were 119, 13.61, and 39.52 ppm, respectively. Efficient degradation of pollutants using visible light can be achieved by employing straightforwardly manufactured Ti3C2 MXene/ZnO/CdSe photocatalysts, making them a practical and promising option.
期刊介绍:
FlatChem - Chemistry of Flat Materials, a new voice in the community, publishes original and significant, cutting-edge research related to the chemistry of graphene and related 2D & layered materials. The overall aim of the journal is to combine the chemistry and applications of these materials, where the submission of communications, full papers, and concepts should contain chemistry in a materials context, which can be both experimental and/or theoretical. In addition to original research articles, FlatChem also offers reviews, minireviews, highlights and perspectives on the future of this research area with the scientific leaders in fields related to Flat Materials. Topics of interest include, but are not limited to, the following: -Design, synthesis, applications and investigation of graphene, graphene related materials and other 2D & layered materials (for example Silicene, Germanene, Phosphorene, MXenes, Boron nitride, Transition metal dichalcogenides) -Characterization of these materials using all forms of spectroscopy and microscopy techniques -Chemical modification or functionalization and dispersion of these materials, as well as interactions with other materials -Exploring the surface chemistry of these materials for applications in: Sensors or detectors in electrochemical/Lab on a Chip devices, Composite materials, Membranes, Environment technology, Catalysis for energy storage and conversion (for example fuel cells, supercapacitors, batteries, hydrogen storage), Biomedical technology (drug delivery, biosensing, bioimaging)