通过 NAToRM 框架整合以人为本的自动化和可持续性:面向弹性工业 5.0 供应链的神经形态计算方法

Steven M. Williamson , Victor Prybutok
{"title":"通过 NAToRM 框架整合以人为本的自动化和可持续性:面向弹性工业 5.0 供应链的神经形态计算方法","authors":"Steven M. Williamson ,&nbsp;Victor Prybutok","doi":"10.1016/j.jjimei.2024.100278","DOIUrl":null,"url":null,"abstract":"<div><p>Industry 5.0 supply chains face critical challenges in effectively managing the rapidly growing volume, variety, velocity, and veracity of big data while simultaneously ensuring sustainability, privacy, and ethical practices. The complex and interconnected nature of modern supply networks and the swift adoption of advanced technologies have created an urgent need for innovative frameworks to navigate these multifaceted challenges. Existing approaches often fail to adequately address the unique demands of Industry 5.0, lacking the ability to process data in real time, uncover deep insights, and enable dynamic, risk-informed decision-making. Moreover, there is a pressing need for frameworks that emphasize interdisciplinary collaboration and proactively address the potential negative impacts of emerging technologies. This paper introduces a novel, multidisciplinary framework that integrates cutting-edge techniques to tackle these challenges head-on, paving the way for more resilient, intelligent, and adaptable supply chains in the Industry 5.0 era.</p></div>","PeriodicalId":100699,"journal":{"name":"International Journal of Information Management Data Insights","volume":"4 2","pages":"Article 100278"},"PeriodicalIF":0.0000,"publicationDate":"2024-08-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2667096824000673/pdfft?md5=a1fe01c170a6ec482754808d3c774634&pid=1-s2.0-S2667096824000673-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Integrating human-centric automation and sustainability through the NAToRM framework: A neuromorphic computing approach for resilient industry 5.0 supply chains\",\"authors\":\"Steven M. Williamson ,&nbsp;Victor Prybutok\",\"doi\":\"10.1016/j.jjimei.2024.100278\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Industry 5.0 supply chains face critical challenges in effectively managing the rapidly growing volume, variety, velocity, and veracity of big data while simultaneously ensuring sustainability, privacy, and ethical practices. The complex and interconnected nature of modern supply networks and the swift adoption of advanced technologies have created an urgent need for innovative frameworks to navigate these multifaceted challenges. Existing approaches often fail to adequately address the unique demands of Industry 5.0, lacking the ability to process data in real time, uncover deep insights, and enable dynamic, risk-informed decision-making. Moreover, there is a pressing need for frameworks that emphasize interdisciplinary collaboration and proactively address the potential negative impacts of emerging technologies. This paper introduces a novel, multidisciplinary framework that integrates cutting-edge techniques to tackle these challenges head-on, paving the way for more resilient, intelligent, and adaptable supply chains in the Industry 5.0 era.</p></div>\",\"PeriodicalId\":100699,\"journal\":{\"name\":\"International Journal of Information Management Data Insights\",\"volume\":\"4 2\",\"pages\":\"Article 100278\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-08-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2667096824000673/pdfft?md5=a1fe01c170a6ec482754808d3c774634&pid=1-s2.0-S2667096824000673-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Information Management Data Insights\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2667096824000673\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Information Management Data Insights","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2667096824000673","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

工业 5.0 供应链在有效管理数量、种类、速度和真实性快速增长的大数据,同时确保可持续性、隐私和道德实践方面面临严峻挑战。现代供应网络的复杂性和相互关联性以及先进技术的迅速采用,迫切需要创新的框架来应对这些多方面的挑战。现有的方法往往无法充分满足工业 5.0 的独特需求,缺乏实时处理数据、发掘深刻见解以及做出动态、风险知情决策的能力。此外,人们迫切需要强调跨学科合作并积极应对新兴技术潜在负面影响的框架。本文介绍了一种新颖的多学科框架,该框架整合了尖端技术来应对这些挑战,为工业 5.0 时代更具弹性、智能和适应性的供应链铺平了道路。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Integrating human-centric automation and sustainability through the NAToRM framework: A neuromorphic computing approach for resilient industry 5.0 supply chains

Industry 5.0 supply chains face critical challenges in effectively managing the rapidly growing volume, variety, velocity, and veracity of big data while simultaneously ensuring sustainability, privacy, and ethical practices. The complex and interconnected nature of modern supply networks and the swift adoption of advanced technologies have created an urgent need for innovative frameworks to navigate these multifaceted challenges. Existing approaches often fail to adequately address the unique demands of Industry 5.0, lacking the ability to process data in real time, uncover deep insights, and enable dynamic, risk-informed decision-making. Moreover, there is a pressing need for frameworks that emphasize interdisciplinary collaboration and proactively address the potential negative impacts of emerging technologies. This paper introduces a novel, multidisciplinary framework that integrates cutting-edge techniques to tackle these challenges head-on, paving the way for more resilient, intelligent, and adaptable supply chains in the Industry 5.0 era.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
19.20
自引率
0.00%
发文量
0
期刊最新文献
Integrating trust and satisfaction into the UTAUT model to predict Chatbot adoption – A comparison between Gen-Z and Millennials Assessing industry 5.0 readiness—Prototype of a holistic digital index to evaluate sustainability, resilience and human-centered factors CovKG: A Covid-19 Knowledge Graph for enabling multidimensional analytics on Covid-19 epidemiological data considering spatiotemporal, environmental, health, and socioeconomic aspects Enhancing customer retention with machine learning: A comparative analysis of ensemble models for accurate churn prediction Customization of health insurance premiums using machine learning and explainable AI
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1