{"title":"冷杉连作期间根瘤微生物在磷循环中的作用","authors":"","doi":"10.1016/j.foreco.2024.122227","DOIUrl":null,"url":null,"abstract":"<div><p>The rhizosphere, a critical interface involving soil, plant roots, and microorganisms, plays a vital role in the feedback processes between plants and soil, especially under phosphorus (P) limiting conditions typical of subtropical forests. This study used a chronosequence design to investigate first-fourth successive planting rotations of Chinese fir (<em>Cunninghamia lanceolata</em>) plantations in Fujian Province, China, with stands around 17 years old. We employed a modified P fractionation assay and metagenomic sequencing to explore P cycling in the rhizosphere across different plantation rotations. Rhizosphere labile P concentrations increased significantly in the fourth rotation, alongside a consistent upward trend in moderately labile P throughout successive plantings. Conversely, stable P and residual P concentrations declined during successive plantings, signaling a shift toward more accessible P forms. From metagenomic analyses, the proportion of P transport processes (transportation of phosphonate, phosphate, and inorganic phosphate) gradually increased. Notably, abundances were significantly higher in the rhizosphere soil of the fourth Chinese fir planting rotation of the <em>K01126</em> gene (involved in phosphate ester mineralization), the <em>phnD</em> gene (associated with phosphonate transport), functional genes related to the solubilization of inorganic phosphate, such as <em>pqqB</em>, <em>pqqC</em>, <em>pqqE</em>, and <em>ppa</em>, and the <em>phoB</em> gene (linked to P-starvation response regulation). The results indicate that functional microbes of the rhizosphere, dominated by <em>Proteobacteria</em> and <em>Acidobacteria</em>, are instrumental in changing P cycling processes during successive plantings. The successive planting rotations of Chinese fir plantations significantly and positively impacted on the gene abundance related to the activation and uptake of P in the rhizosphere. Based on these insights, specific strategies, such as regular monitoring and application of phosphate fertilizer and adjusting rotation timing based on the soil rhizosphere P status, and incorporating native broad-leaved tree species are suggested to promote efficient P cycling, thus supporting sustainable forest management practices.</p></div>","PeriodicalId":12350,"journal":{"name":"Forest Ecology and Management","volume":null,"pages":null},"PeriodicalIF":3.7000,"publicationDate":"2024-08-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Rhizosphere microbial roles in phosphorus cycling during successive plantings of Chinese fir plantations\",\"authors\":\"\",\"doi\":\"10.1016/j.foreco.2024.122227\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The rhizosphere, a critical interface involving soil, plant roots, and microorganisms, plays a vital role in the feedback processes between plants and soil, especially under phosphorus (P) limiting conditions typical of subtropical forests. This study used a chronosequence design to investigate first-fourth successive planting rotations of Chinese fir (<em>Cunninghamia lanceolata</em>) plantations in Fujian Province, China, with stands around 17 years old. We employed a modified P fractionation assay and metagenomic sequencing to explore P cycling in the rhizosphere across different plantation rotations. Rhizosphere labile P concentrations increased significantly in the fourth rotation, alongside a consistent upward trend in moderately labile P throughout successive plantings. Conversely, stable P and residual P concentrations declined during successive plantings, signaling a shift toward more accessible P forms. From metagenomic analyses, the proportion of P transport processes (transportation of phosphonate, phosphate, and inorganic phosphate) gradually increased. Notably, abundances were significantly higher in the rhizosphere soil of the fourth Chinese fir planting rotation of the <em>K01126</em> gene (involved in phosphate ester mineralization), the <em>phnD</em> gene (associated with phosphonate transport), functional genes related to the solubilization of inorganic phosphate, such as <em>pqqB</em>, <em>pqqC</em>, <em>pqqE</em>, and <em>ppa</em>, and the <em>phoB</em> gene (linked to P-starvation response regulation). The results indicate that functional microbes of the rhizosphere, dominated by <em>Proteobacteria</em> and <em>Acidobacteria</em>, are instrumental in changing P cycling processes during successive plantings. The successive planting rotations of Chinese fir plantations significantly and positively impacted on the gene abundance related to the activation and uptake of P in the rhizosphere. Based on these insights, specific strategies, such as regular monitoring and application of phosphate fertilizer and adjusting rotation timing based on the soil rhizosphere P status, and incorporating native broad-leaved tree species are suggested to promote efficient P cycling, thus supporting sustainable forest management practices.</p></div>\",\"PeriodicalId\":12350,\"journal\":{\"name\":\"Forest Ecology and Management\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.7000,\"publicationDate\":\"2024-08-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Forest Ecology and Management\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0378112724005395\",\"RegionNum\":2,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"FORESTRY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Forest Ecology and Management","FirstCategoryId":"97","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0378112724005395","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"FORESTRY","Score":null,"Total":0}
Rhizosphere microbial roles in phosphorus cycling during successive plantings of Chinese fir plantations
The rhizosphere, a critical interface involving soil, plant roots, and microorganisms, plays a vital role in the feedback processes between plants and soil, especially under phosphorus (P) limiting conditions typical of subtropical forests. This study used a chronosequence design to investigate first-fourth successive planting rotations of Chinese fir (Cunninghamia lanceolata) plantations in Fujian Province, China, with stands around 17 years old. We employed a modified P fractionation assay and metagenomic sequencing to explore P cycling in the rhizosphere across different plantation rotations. Rhizosphere labile P concentrations increased significantly in the fourth rotation, alongside a consistent upward trend in moderately labile P throughout successive plantings. Conversely, stable P and residual P concentrations declined during successive plantings, signaling a shift toward more accessible P forms. From metagenomic analyses, the proportion of P transport processes (transportation of phosphonate, phosphate, and inorganic phosphate) gradually increased. Notably, abundances were significantly higher in the rhizosphere soil of the fourth Chinese fir planting rotation of the K01126 gene (involved in phosphate ester mineralization), the phnD gene (associated with phosphonate transport), functional genes related to the solubilization of inorganic phosphate, such as pqqB, pqqC, pqqE, and ppa, and the phoB gene (linked to P-starvation response regulation). The results indicate that functional microbes of the rhizosphere, dominated by Proteobacteria and Acidobacteria, are instrumental in changing P cycling processes during successive plantings. The successive planting rotations of Chinese fir plantations significantly and positively impacted on the gene abundance related to the activation and uptake of P in the rhizosphere. Based on these insights, specific strategies, such as regular monitoring and application of phosphate fertilizer and adjusting rotation timing based on the soil rhizosphere P status, and incorporating native broad-leaved tree species are suggested to promote efficient P cycling, thus supporting sustainable forest management practices.
期刊介绍:
Forest Ecology and Management publishes scientific articles linking forest ecology with forest management, focusing on the application of biological, ecological and social knowledge to the management and conservation of plantations and natural forests. The scope of the journal includes all forest ecosystems of the world.
A peer-review process ensures the quality and international interest of the manuscripts accepted for publication. The journal encourages communication between scientists in disparate fields who share a common interest in ecology and forest management, bridging the gap between research workers and forest managers.
We encourage submission of papers that will have the strongest interest and value to the Journal''s international readership. Some key features of papers with strong interest include:
1. Clear connections between the ecology and management of forests;
2. Novel ideas or approaches to important challenges in forest ecology and management;
3. Studies that address a population of interest beyond the scale of single research sites, Three key points in the design of forest experiments, Forest Ecology and Management 255 (2008) 2022-2023);
4. Review Articles on timely, important topics. Authors are welcome to contact one of the editors to discuss the suitability of a potential review manuscript.
The Journal encourages proposals for special issues examining important areas of forest ecology and management. Potential guest editors should contact any of the Editors to begin discussions about topics, potential papers, and other details.