亚硝酸盐促进异养硝化-好氧反硝化以及EN-F2菌株对总氮的高效去除

IF 4.1 2区 环境科学与生态学 Q2 BIOTECHNOLOGY & APPLIED MICROBIOLOGY International Biodeterioration & Biodegradation Pub Date : 2024-08-22 DOI:10.1016/j.ibiod.2024.105883
Manman Zhang, Jiachen Wang, Dandan Li, Tengxia He, Mengping Chen, Cerong Wang, Chunxia Zheng
{"title":"亚硝酸盐促进异养硝化-好氧反硝化以及EN-F2菌株对总氮的高效去除","authors":"Manman Zhang,&nbsp;Jiachen Wang,&nbsp;Dandan Li,&nbsp;Tengxia He,&nbsp;Mengping Chen,&nbsp;Cerong Wang,&nbsp;Chunxia Zheng","doi":"10.1016/j.ibiod.2024.105883","DOIUrl":null,"url":null,"abstract":"<div><p>The inhibition of heterotrophic nitrification-aerobic denitrification (HN-AD) process and low efficiency of total nitrogen conversion under nitrite stress were overcome by strain EN-F2. Results demonstrated that nitrite addition increased total nitrogen conversion to 91.36% and 87.02% for ammonium and nitrate systems, respectively, representing improvements of 5.61% and 15.41%. This enhancement is likely due to the simultaneous acceleration of cell growth, and consumption of ammonium and nitrate. Furthermore, 10 mg/L of hydroxylamine could be almost completely oxidized in a wide range of environmental conditions in the presence of 50 mg/L nitrite, and 100% and 89.82% of nitrite and total nitrogen could be degraded under the conditions of 25 °C, sodium succinate, 7.40 mg/L of dissolved oxygen, C/N ratio 20, initial pH 7.40–7.80 and inoculation quantity of 0.5 × 10<sup>8</sup> CFU/mL. Altogether, the HN-AD performance of strain EN-F2 can be promoted by nitrite, and no nitrate and hydroxylamine accumulation were found.</p></div>","PeriodicalId":13643,"journal":{"name":"International Biodeterioration & Biodegradation","volume":"195 ","pages":"Article 105883"},"PeriodicalIF":4.1000,"publicationDate":"2024-08-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Promotion of heterotrophic nitrification-aerobic denitrification by nitrite and efficient removal of total nitrogen of strain EN-F2\",\"authors\":\"Manman Zhang,&nbsp;Jiachen Wang,&nbsp;Dandan Li,&nbsp;Tengxia He,&nbsp;Mengping Chen,&nbsp;Cerong Wang,&nbsp;Chunxia Zheng\",\"doi\":\"10.1016/j.ibiod.2024.105883\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The inhibition of heterotrophic nitrification-aerobic denitrification (HN-AD) process and low efficiency of total nitrogen conversion under nitrite stress were overcome by strain EN-F2. Results demonstrated that nitrite addition increased total nitrogen conversion to 91.36% and 87.02% for ammonium and nitrate systems, respectively, representing improvements of 5.61% and 15.41%. This enhancement is likely due to the simultaneous acceleration of cell growth, and consumption of ammonium and nitrate. Furthermore, 10 mg/L of hydroxylamine could be almost completely oxidized in a wide range of environmental conditions in the presence of 50 mg/L nitrite, and 100% and 89.82% of nitrite and total nitrogen could be degraded under the conditions of 25 °C, sodium succinate, 7.40 mg/L of dissolved oxygen, C/N ratio 20, initial pH 7.40–7.80 and inoculation quantity of 0.5 × 10<sup>8</sup> CFU/mL. Altogether, the HN-AD performance of strain EN-F2 can be promoted by nitrite, and no nitrate and hydroxylamine accumulation were found.</p></div>\",\"PeriodicalId\":13643,\"journal\":{\"name\":\"International Biodeterioration & Biodegradation\",\"volume\":\"195 \",\"pages\":\"Article 105883\"},\"PeriodicalIF\":4.1000,\"publicationDate\":\"2024-08-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Biodeterioration & Biodegradation\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0964830524001549\",\"RegionNum\":2,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOTECHNOLOGY & APPLIED MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Biodeterioration & Biodegradation","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0964830524001549","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

菌株EN-F2克服了亚硝酸盐胁迫下异养硝化-好氧反硝化(HN-AD)过程受抑制和总氮转化效率低的问题。结果表明,添加亚硝酸盐后,铵盐和硝酸盐系统的总氮转化率分别提高到 91.36% 和 87.02%,分别提高了 5.61% 和 15.41%。这种提高可能是由于细胞生长以及铵和硝酸盐的消耗同时加快。此外,在亚硝酸盐含量为 50 毫克/升的条件下,10 毫克/升的羟胺在各种环境条件下几乎都能被完全氧化;在 25 °C、琥珀酸钠、溶解氧含量为 7.40 毫克/升、C/N 比为 20、初始 pH 值为 7.40-7.80 和接种量为 0.5 × 108 CFU/mL 的条件下,亚硝酸盐和总氮的降解率分别为 100%和 89.82%。总之,亚硝酸盐可促进菌株EN-F2的HN-AD性能,且未发现硝酸盐和羟胺积累。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Promotion of heterotrophic nitrification-aerobic denitrification by nitrite and efficient removal of total nitrogen of strain EN-F2

The inhibition of heterotrophic nitrification-aerobic denitrification (HN-AD) process and low efficiency of total nitrogen conversion under nitrite stress were overcome by strain EN-F2. Results demonstrated that nitrite addition increased total nitrogen conversion to 91.36% and 87.02% for ammonium and nitrate systems, respectively, representing improvements of 5.61% and 15.41%. This enhancement is likely due to the simultaneous acceleration of cell growth, and consumption of ammonium and nitrate. Furthermore, 10 mg/L of hydroxylamine could be almost completely oxidized in a wide range of environmental conditions in the presence of 50 mg/L nitrite, and 100% and 89.82% of nitrite and total nitrogen could be degraded under the conditions of 25 °C, sodium succinate, 7.40 mg/L of dissolved oxygen, C/N ratio 20, initial pH 7.40–7.80 and inoculation quantity of 0.5 × 108 CFU/mL. Altogether, the HN-AD performance of strain EN-F2 can be promoted by nitrite, and no nitrate and hydroxylamine accumulation were found.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
9.60
自引率
10.40%
发文量
107
审稿时长
21 days
期刊介绍: International Biodeterioration and Biodegradation publishes original research papers and reviews on the biological causes of deterioration or degradation.
期刊最新文献
Lignite degraded by Trichoderma citrinoviride: Products, processes and mechanisms Antifouling activity exhibited by pyrrolo compound isolated from marine sponge associated bacterium Halobacillus kuroshimensis SNSAB01 against barnacles Editorial Board Biochemical and chemical markers associated with biodeterioration agents isolated from archive audio-visual materials Biodeterioration of chrome-tanned leather and its prevention strategies
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1