Zhaoying Liu , Faxiang Zhang , Zhihui Sun , Shaodong Jiang , Zhenhui Duan
{"title":"基于类递增学习的分布式光纤传感信号识别","authors":"Zhaoying Liu , Faxiang Zhang , Zhihui Sun , Shaodong Jiang , Zhenhui Duan","doi":"10.1016/j.yofte.2024.103940","DOIUrl":null,"url":null,"abstract":"<div><p>Distributed fiber optic sensing (DFOS) based on phase-sensitive optical time-domain reflectance (φ-OTDR) technology has outstanding performance in pipeline safety monitoring and perimeter security detection. Accurate identification of new events remains challenging due to environmental variability and emerging forms of intrusions. In order to solve the problem of failing to accurately identify new events due to the inability to obtain all samples at once in real-time monitoring, this paper proposes an incremental learning network framework for distributed fiber-optic sensing signal recognition. This framework integrates an optimized Learning without Memorizing (LwM) algorithm with an improved ConvNeXt network for dynamic training of new events. An improved Efficient Channel Attention (HECA) is incorporated to thoroughly extract the spatio-temporal features of the intrusion signals collected by the DFOS. The forgetting problem is mitigated during incremental learning using knowledge distillation and optimized Gradient Weighted Class Activation Mapping to generate an attention map. A linear correction layer is added after the output layer to correct the bias towards new classes by rebalancing the information between new and old classes. Experimental comparisons show that the recognition rate for 10 different intrusion signals exceeds 93 %, while the forgetting rate is reduced from a peak of 41.44 % to 5.25 %. The time required to process and train incremental learning for 1000 samples in real time on an edge device (NVIDIA 3050 GPU) is approximately 1060 s, its ability to demonstrating its suitability for deployment in resource-constrained.</p></div>","PeriodicalId":19663,"journal":{"name":"Optical Fiber Technology","volume":"87 ","pages":"Article 103940"},"PeriodicalIF":2.6000,"publicationDate":"2024-08-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Distributed fiber optic sensing signal recognition based on class-incremental learning\",\"authors\":\"Zhaoying Liu , Faxiang Zhang , Zhihui Sun , Shaodong Jiang , Zhenhui Duan\",\"doi\":\"10.1016/j.yofte.2024.103940\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Distributed fiber optic sensing (DFOS) based on phase-sensitive optical time-domain reflectance (φ-OTDR) technology has outstanding performance in pipeline safety monitoring and perimeter security detection. Accurate identification of new events remains challenging due to environmental variability and emerging forms of intrusions. In order to solve the problem of failing to accurately identify new events due to the inability to obtain all samples at once in real-time monitoring, this paper proposes an incremental learning network framework for distributed fiber-optic sensing signal recognition. This framework integrates an optimized Learning without Memorizing (LwM) algorithm with an improved ConvNeXt network for dynamic training of new events. An improved Efficient Channel Attention (HECA) is incorporated to thoroughly extract the spatio-temporal features of the intrusion signals collected by the DFOS. The forgetting problem is mitigated during incremental learning using knowledge distillation and optimized Gradient Weighted Class Activation Mapping to generate an attention map. A linear correction layer is added after the output layer to correct the bias towards new classes by rebalancing the information between new and old classes. Experimental comparisons show that the recognition rate for 10 different intrusion signals exceeds 93 %, while the forgetting rate is reduced from a peak of 41.44 % to 5.25 %. The time required to process and train incremental learning for 1000 samples in real time on an edge device (NVIDIA 3050 GPU) is approximately 1060 s, its ability to demonstrating its suitability for deployment in resource-constrained.</p></div>\",\"PeriodicalId\":19663,\"journal\":{\"name\":\"Optical Fiber Technology\",\"volume\":\"87 \",\"pages\":\"Article 103940\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2024-08-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Optical Fiber Technology\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1068520024002852\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Optical Fiber Technology","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1068520024002852","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
Distributed fiber optic sensing signal recognition based on class-incremental learning
Distributed fiber optic sensing (DFOS) based on phase-sensitive optical time-domain reflectance (φ-OTDR) technology has outstanding performance in pipeline safety monitoring and perimeter security detection. Accurate identification of new events remains challenging due to environmental variability and emerging forms of intrusions. In order to solve the problem of failing to accurately identify new events due to the inability to obtain all samples at once in real-time monitoring, this paper proposes an incremental learning network framework for distributed fiber-optic sensing signal recognition. This framework integrates an optimized Learning without Memorizing (LwM) algorithm with an improved ConvNeXt network for dynamic training of new events. An improved Efficient Channel Attention (HECA) is incorporated to thoroughly extract the spatio-temporal features of the intrusion signals collected by the DFOS. The forgetting problem is mitigated during incremental learning using knowledge distillation and optimized Gradient Weighted Class Activation Mapping to generate an attention map. A linear correction layer is added after the output layer to correct the bias towards new classes by rebalancing the information between new and old classes. Experimental comparisons show that the recognition rate for 10 different intrusion signals exceeds 93 %, while the forgetting rate is reduced from a peak of 41.44 % to 5.25 %. The time required to process and train incremental learning for 1000 samples in real time on an edge device (NVIDIA 3050 GPU) is approximately 1060 s, its ability to demonstrating its suitability for deployment in resource-constrained.
期刊介绍:
Innovations in optical fiber technology are revolutionizing world communications. Newly developed fiber amplifiers allow for direct transmission of high-speed signals over transcontinental distances without the need for electronic regeneration. Optical fibers find new applications in data processing. The impact of fiber materials, devices, and systems on communications in the coming decades will create an abundance of primary literature and the need for up-to-date reviews.
Optical Fiber Technology: Materials, Devices, and Systems is a new cutting-edge journal designed to fill a need in this rapidly evolving field for speedy publication of regular length papers. Both theoretical and experimental papers on fiber materials, devices, and system performance evaluation and measurements are eligible, with emphasis on practical applications.