木质纤维素簕杜鹃催化转化为生物乙醇的新型实验方法

IF 4.8 Q1 MICROBIOLOGY Current Research in Microbial Sciences Pub Date : 2024-01-01 DOI:10.1016/j.crmicr.2024.100267
Souvik Kumar Paul , Amar Jyoti Das
{"title":"木质纤维素簕杜鹃催化转化为生物乙醇的新型实验方法","authors":"Souvik Kumar Paul ,&nbsp;Amar Jyoti Das","doi":"10.1016/j.crmicr.2024.100267","DOIUrl":null,"url":null,"abstract":"<div><p><em>Bambusa bambos (B.B) biomass</em> is cellulose rich lignocellulosic material, containing 47.49% cellulose, 17.49% hemicellulose, 23.56% lignin was used as a potential substrate for bioethanol production. The research paper investigates the use of <em>B.B</em> biomass as a substrate for bio-ethanol production through a two-phase catalytic conversion process. Four water-regulated regimes were identified to optimize the conversion of lignocellulosic biomass to biofuel precursors. The catalytic hydrolysis of <em>B.B</em> using CuCl<sub>2</sub> was conducted for 10 hours at 110˚C, in aprotic ionic liquid (1-Butyl-3-methylimidazolium chloride) medium. The concentrations of glucose and 5-hydroxymethylfurfural (5-HMF) were measured while varying the amount of water addition. Water played a crucial role in the conversion of cellulose to glucose and 5-HMF by influencing product yields through the interplay of transport properties like heat conduction and viscosity. The highest glucose yield was achieved at 60.82% when operating at a water inclusion rate of 115.72 µL water/h for a duration of 6 hours at 110˚C. On the other hand, the maximum HMF yield was observed as 5.84% at water inclusion rate of 77.15 µL water/h for 5 hours at 110˚C. Yeast mediated glucose fermentation resulted in a bioethanol concentration of 5.5 mg/mL utilizing 15 mg/mL of catalytically produced glucose at a temperature of 30°C. After catalytic hydrolysis, the ionic liquid was also efficiently recycled for a sustainable economy.</p></div>","PeriodicalId":34305,"journal":{"name":"Current Research in Microbial Sciences","volume":null,"pages":null},"PeriodicalIF":4.8000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S266651742400049X/pdfft?md5=d4c5a7abac98289760a4b9b0efead185&pid=1-s2.0-S266651742400049X-main.pdf","citationCount":"0","resultStr":"{\"title\":\"A novel experimental approach for the catalytic conversion of lignocellulosic Bambusa bambos to bioethanol\",\"authors\":\"Souvik Kumar Paul ,&nbsp;Amar Jyoti Das\",\"doi\":\"10.1016/j.crmicr.2024.100267\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p><em>Bambusa bambos (B.B) biomass</em> is cellulose rich lignocellulosic material, containing 47.49% cellulose, 17.49% hemicellulose, 23.56% lignin was used as a potential substrate for bioethanol production. The research paper investigates the use of <em>B.B</em> biomass as a substrate for bio-ethanol production through a two-phase catalytic conversion process. Four water-regulated regimes were identified to optimize the conversion of lignocellulosic biomass to biofuel precursors. The catalytic hydrolysis of <em>B.B</em> using CuCl<sub>2</sub> was conducted for 10 hours at 110˚C, in aprotic ionic liquid (1-Butyl-3-methylimidazolium chloride) medium. The concentrations of glucose and 5-hydroxymethylfurfural (5-HMF) were measured while varying the amount of water addition. Water played a crucial role in the conversion of cellulose to glucose and 5-HMF by influencing product yields through the interplay of transport properties like heat conduction and viscosity. The highest glucose yield was achieved at 60.82% when operating at a water inclusion rate of 115.72 µL water/h for a duration of 6 hours at 110˚C. On the other hand, the maximum HMF yield was observed as 5.84% at water inclusion rate of 77.15 µL water/h for 5 hours at 110˚C. Yeast mediated glucose fermentation resulted in a bioethanol concentration of 5.5 mg/mL utilizing 15 mg/mL of catalytically produced glucose at a temperature of 30°C. After catalytic hydrolysis, the ionic liquid was also efficiently recycled for a sustainable economy.</p></div>\",\"PeriodicalId\":34305,\"journal\":{\"name\":\"Current Research in Microbial Sciences\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.8000,\"publicationDate\":\"2024-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S266651742400049X/pdfft?md5=d4c5a7abac98289760a4b9b0efead185&pid=1-s2.0-S266651742400049X-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Current Research in Microbial Sciences\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S266651742400049X\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current Research in Microbial Sciences","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S266651742400049X","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

簕杜鹃(Bambusa bambos,B.B)生物质是一种富含纤维素的木质纤维素材料,含有 47.49% 的纤维素、17.49% 的半纤维素和 23.56% 的木质素。该研究论文探讨了通过两相催化转化工艺将 B.B 生物质用作生物乙醇生产的基质。确定了四种水调节机制,以优化木质纤维素生物质向生物燃料前体的转化。在无相离子液体(1-丁基-3-甲基氯化咪唑)介质中,使用 CuCl2 在 110˚C 温度下对 B.B 进行了 10 小时的催化水解。在改变加水量的同时,测量了葡萄糖和 5-羟甲基糠醛(5-HMF)的浓度。水在纤维素转化为葡萄糖和 5-HMF 的过程中起着至关重要的作用,它通过热传导和粘度等传输特性的相互作用来影响产物产量。在 110˚C 下以 115.72 µL 水/小时的含水率运行 6 小时,葡萄糖产量最高,达到 60.82%。另一方面,在 110˚C 温度下,以 77.15 µL 水/小时的含水率运行 5 小时,观察到最高的 HMF 产量为 5.84%。在酵母介导的葡萄糖发酵过程中,利用 15 毫克/毫升的葡萄糖催化产生的生物乙醇浓度为 5.5 毫克/毫升,温度为 30 摄氏度。催化水解后,离子液体也得到有效回收,实现了可持续经济。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A novel experimental approach for the catalytic conversion of lignocellulosic Bambusa bambos to bioethanol

Bambusa bambos (B.B) biomass is cellulose rich lignocellulosic material, containing 47.49% cellulose, 17.49% hemicellulose, 23.56% lignin was used as a potential substrate for bioethanol production. The research paper investigates the use of B.B biomass as a substrate for bio-ethanol production through a two-phase catalytic conversion process. Four water-regulated regimes were identified to optimize the conversion of lignocellulosic biomass to biofuel precursors. The catalytic hydrolysis of B.B using CuCl2 was conducted for 10 hours at 110˚C, in aprotic ionic liquid (1-Butyl-3-methylimidazolium chloride) medium. The concentrations of glucose and 5-hydroxymethylfurfural (5-HMF) were measured while varying the amount of water addition. Water played a crucial role in the conversion of cellulose to glucose and 5-HMF by influencing product yields through the interplay of transport properties like heat conduction and viscosity. The highest glucose yield was achieved at 60.82% when operating at a water inclusion rate of 115.72 µL water/h for a duration of 6 hours at 110˚C. On the other hand, the maximum HMF yield was observed as 5.84% at water inclusion rate of 77.15 µL water/h for 5 hours at 110˚C. Yeast mediated glucose fermentation resulted in a bioethanol concentration of 5.5 mg/mL utilizing 15 mg/mL of catalytically produced glucose at a temperature of 30°C. After catalytic hydrolysis, the ionic liquid was also efficiently recycled for a sustainable economy.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Current Research in Microbial Sciences
Current Research in Microbial Sciences Immunology and Microbiology-Immunology and Microbiology (miscellaneous)
CiteScore
7.90
自引率
0.00%
发文量
81
审稿时长
66 days
期刊最新文献
Table of Contents Diverse roles of low-molecular weight thiol GSH in Francisella’s virulence, location sensing and GSH-stealing from host Acridones as promising drug candidates against Oropouche virus Genomic investigation unveils high-risk ESBL producing Enterobacteriaceae within a rural environmental water body Effects of temperature-related changes on charred bone in soil: From P release to microbial community
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1