顺应摩擦梁接触模型

IF 6.9 1区 工程技术 Q1 ENGINEERING, MULTIDISCIPLINARY Computer Methods in Applied Mechanics and Engineering Pub Date : 2024-08-23 DOI:10.1016/j.cma.2024.117310
{"title":"顺应摩擦梁接触模型","authors":"","doi":"10.1016/j.cma.2024.117310","DOIUrl":null,"url":null,"abstract":"<div><p>We develop a model for predicting the mechanical behavior of a system of slender one-dimensional bodies (fibers or beams) interacting via frictional contact. Relying on an integral penalty-based formulation, it can robustly capture the behavior in the case of conforming contact occurring over regions of finite size. Two formulations of the model are presented and validated against fully resolved continuum finite element simulations. Overall, the proposed framework is an effective tool in exploring the mechanical behavior of fabrics, textiles as well as three-dimensional frictional architected solids, as demonstrated by the simulation of the effective response of a periodic intertwined metamaterial.</p></div>","PeriodicalId":55222,"journal":{"name":"Computer Methods in Applied Mechanics and Engineering","volume":null,"pages":null},"PeriodicalIF":6.9000,"publicationDate":"2024-08-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0045782524005668/pdfft?md5=68c10bcc21ee2e4de9723ebe33ca95d0&pid=1-s2.0-S0045782524005668-main.pdf","citationCount":"0","resultStr":"{\"title\":\"A conforming frictional beam contact model\",\"authors\":\"\",\"doi\":\"10.1016/j.cma.2024.117310\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>We develop a model for predicting the mechanical behavior of a system of slender one-dimensional bodies (fibers or beams) interacting via frictional contact. Relying on an integral penalty-based formulation, it can robustly capture the behavior in the case of conforming contact occurring over regions of finite size. Two formulations of the model are presented and validated against fully resolved continuum finite element simulations. Overall, the proposed framework is an effective tool in exploring the mechanical behavior of fabrics, textiles as well as three-dimensional frictional architected solids, as demonstrated by the simulation of the effective response of a periodic intertwined metamaterial.</p></div>\",\"PeriodicalId\":55222,\"journal\":{\"name\":\"Computer Methods in Applied Mechanics and Engineering\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":6.9000,\"publicationDate\":\"2024-08-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S0045782524005668/pdfft?md5=68c10bcc21ee2e4de9723ebe33ca95d0&pid=1-s2.0-S0045782524005668-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computer Methods in Applied Mechanics and Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0045782524005668\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computer Methods in Applied Mechanics and Engineering","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0045782524005668","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

我们建立了一个模型,用于预测通过摩擦接触相互作用的细长一维体(纤维或梁)系统的机械行为。依靠基于积分惩罚的公式,该模型可以稳健地捕捉在有限尺寸区域内发生的保形接触行为。本文介绍了该模型的两种计算方法,并通过完全解析的连续有限元模拟进行了验证。总之,所提出的框架是探索织物、纺织品以及三维摩擦结构固体力学行为的有效工具,对周期性交织超材料有效响应的模拟就证明了这一点。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A conforming frictional beam contact model

We develop a model for predicting the mechanical behavior of a system of slender one-dimensional bodies (fibers or beams) interacting via frictional contact. Relying on an integral penalty-based formulation, it can robustly capture the behavior in the case of conforming contact occurring over regions of finite size. Two formulations of the model are presented and validated against fully resolved continuum finite element simulations. Overall, the proposed framework is an effective tool in exploring the mechanical behavior of fabrics, textiles as well as three-dimensional frictional architected solids, as demonstrated by the simulation of the effective response of a periodic intertwined metamaterial.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
12.70
自引率
15.30%
发文量
719
审稿时长
44 days
期刊介绍: Computer Methods in Applied Mechanics and Engineering stands as a cornerstone in the realm of computational science and engineering. With a history spanning over five decades, the journal has been a key platform for disseminating papers on advanced mathematical modeling and numerical solutions. Interdisciplinary in nature, these contributions encompass mechanics, mathematics, computer science, and various scientific disciplines. The journal welcomes a broad range of computational methods addressing the simulation, analysis, and design of complex physical problems, making it a vital resource for researchers in the field.
期刊最新文献
A novel sensitivity analysis method for multi-input-multi-output structures considering non-probabilistic correlations Active learning inspired multi-fidelity probabilistic modelling of geomaterial property A parameter-free and locking-free enriched Galerkin method of arbitrary order for linear elasticity An immersed multi-material arbitrary Lagrangian–Eulerian finite element method for fluid–structure-interaction problems Learning the Hodgkin–Huxley model with operator learning techniques
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1