基于子集模拟的简化方法,用于时间相关可靠性分析中具有多个不规则腐蚀缺陷的管道

IF 3 2区 工程技术 Q2 ENGINEERING, MECHANICAL International Journal of Pressure Vessels and Piping Pub Date : 2024-08-22 DOI:10.1016/j.ijpvp.2024.105295
Yang Shang Hsu
{"title":"基于子集模拟的简化方法,用于时间相关可靠性分析中具有多个不规则腐蚀缺陷的管道","authors":"Yang Shang Hsu","doi":"10.1016/j.ijpvp.2024.105295","DOIUrl":null,"url":null,"abstract":"<div><p>Pipeline system plays an important role in the natural gas and petroleum transportation, and it is widely employed in the engineering application. However, the pipeline system is subjected to corrosion given the industry environment condition, or soil condition when it is buried. In this case, it is important to assess the remaining life of corroded pipeline. Consequently, it is important to predict the failure probability considering the corrosion growth over time and operating pressure. Nevertheless, the prediction of failure probability in corroded pipeline in not an easy task, due to the fact that a realistic corrosion usually has an irregular geometry, especially, when multiple irregular corrosion is involved in the analysis. To simplify the problem, this work presents a simplified procedure for time-dependent reliability analysis to predict the failure probability in pipeline with multiple irregular corrosion defects, considering two failure modes, the burst and leak mode. The approach is based on Subset Simulation and Weighted Depth Difference method, where the multiple irregular corrosion is treated by a discretization procedure and a weighting coefficient is evaluated in every discretization points. Then, this weighting coefficient is introduced into burst pressure assessment, which is employed by burst failure mode limit state function. In this work, the corrosion growth is modelled by power function corrosion model, and initial corrosion depth is generated randomly. The Subset Simulation is employed to evaluate the failure probability, where the Markov Chain Monte Carlo is adopted to evaluate the conditional probability and Metropolis-Hasting algorithm is employed to solve the problem. Finally, several scenarios with single and multiple irregular corrosion defects are analyzed to demonstrate the effectiveness of presented procedure.</p></div>","PeriodicalId":54946,"journal":{"name":"International Journal of Pressure Vessels and Piping","volume":"211 ","pages":"Article 105295"},"PeriodicalIF":3.0000,"publicationDate":"2024-08-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Subset simulation based simplified approach for pipeline with multiple irregular corrosion defects in time-dependent reliability analysis\",\"authors\":\"Yang Shang Hsu\",\"doi\":\"10.1016/j.ijpvp.2024.105295\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Pipeline system plays an important role in the natural gas and petroleum transportation, and it is widely employed in the engineering application. However, the pipeline system is subjected to corrosion given the industry environment condition, or soil condition when it is buried. In this case, it is important to assess the remaining life of corroded pipeline. Consequently, it is important to predict the failure probability considering the corrosion growth over time and operating pressure. Nevertheless, the prediction of failure probability in corroded pipeline in not an easy task, due to the fact that a realistic corrosion usually has an irregular geometry, especially, when multiple irregular corrosion is involved in the analysis. To simplify the problem, this work presents a simplified procedure for time-dependent reliability analysis to predict the failure probability in pipeline with multiple irregular corrosion defects, considering two failure modes, the burst and leak mode. The approach is based on Subset Simulation and Weighted Depth Difference method, where the multiple irregular corrosion is treated by a discretization procedure and a weighting coefficient is evaluated in every discretization points. Then, this weighting coefficient is introduced into burst pressure assessment, which is employed by burst failure mode limit state function. In this work, the corrosion growth is modelled by power function corrosion model, and initial corrosion depth is generated randomly. The Subset Simulation is employed to evaluate the failure probability, where the Markov Chain Monte Carlo is adopted to evaluate the conditional probability and Metropolis-Hasting algorithm is employed to solve the problem. Finally, several scenarios with single and multiple irregular corrosion defects are analyzed to demonstrate the effectiveness of presented procedure.</p></div>\",\"PeriodicalId\":54946,\"journal\":{\"name\":\"International Journal of Pressure Vessels and Piping\",\"volume\":\"211 \",\"pages\":\"Article 105295\"},\"PeriodicalIF\":3.0000,\"publicationDate\":\"2024-08-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Pressure Vessels and Piping\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0308016124001728\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, MECHANICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Pressure Vessels and Piping","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0308016124001728","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0

摘要

管道系统在天然气和石油运输中发挥着重要作用,在工程应用中被广泛采用。然而,由于行业环境条件或埋设时的土壤条件,管道系统会受到腐蚀。在这种情况下,评估腐蚀管道的剩余寿命就显得尤为重要。因此,考虑到腐蚀随时间和工作压力的增长,预测失效概率非常重要。然而,由于现实中的腐蚀通常具有不规则的几何形状,特别是在分析中涉及多重不规则腐蚀时,预测腐蚀管道的失效概率并非易事。为了简化问题,本研究提出了一种简化的随时间变化的可靠性分析程序,用于预测存在多种不规则腐蚀缺陷的管道的失效概率,并考虑了两种失效模式,即爆裂和泄漏模式。该方法基于子集模拟和加权深度差分法,通过离散化程序处理多重不规则腐蚀,并在每个离散点评估加权系数。然后,将该加权系数引入爆破压力评估,并在爆破失效模式极限状态函数中加以应用。在这项工作中,腐蚀增长采用幂函数腐蚀模型建模,初始腐蚀深度随机生成。采用子集模拟来评估失效概率,其中采用马尔可夫链蒙特卡洛来评估条件概率,并采用 Metropolis-Hasting 算法来解决问题。最后,分析了单个和多个不规则腐蚀缺陷的几种情况,以证明所介绍程序的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Subset simulation based simplified approach for pipeline with multiple irregular corrosion defects in time-dependent reliability analysis

Pipeline system plays an important role in the natural gas and petroleum transportation, and it is widely employed in the engineering application. However, the pipeline system is subjected to corrosion given the industry environment condition, or soil condition when it is buried. In this case, it is important to assess the remaining life of corroded pipeline. Consequently, it is important to predict the failure probability considering the corrosion growth over time and operating pressure. Nevertheless, the prediction of failure probability in corroded pipeline in not an easy task, due to the fact that a realistic corrosion usually has an irregular geometry, especially, when multiple irregular corrosion is involved in the analysis. To simplify the problem, this work presents a simplified procedure for time-dependent reliability analysis to predict the failure probability in pipeline with multiple irregular corrosion defects, considering two failure modes, the burst and leak mode. The approach is based on Subset Simulation and Weighted Depth Difference method, where the multiple irregular corrosion is treated by a discretization procedure and a weighting coefficient is evaluated in every discretization points. Then, this weighting coefficient is introduced into burst pressure assessment, which is employed by burst failure mode limit state function. In this work, the corrosion growth is modelled by power function corrosion model, and initial corrosion depth is generated randomly. The Subset Simulation is employed to evaluate the failure probability, where the Markov Chain Monte Carlo is adopted to evaluate the conditional probability and Metropolis-Hasting algorithm is employed to solve the problem. Finally, several scenarios with single and multiple irregular corrosion defects are analyzed to demonstrate the effectiveness of presented procedure.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
5.30
自引率
13.30%
发文量
208
审稿时长
17 months
期刊介绍: Pressure vessel engineering technology is of importance in many branches of industry. This journal publishes the latest research results and related information on all its associated aspects, with particular emphasis on the structural integrity assessment, maintenance and life extension of pressurised process engineering plants. The anticipated coverage of the International Journal of Pressure Vessels and Piping ranges from simple mass-produced pressure vessels to large custom-built vessels and tanks. Pressure vessels technology is a developing field, and contributions on the following topics will therefore be welcome: • Pressure vessel engineering • Structural integrity assessment • Design methods • Codes and standards • Fabrication and welding • Materials properties requirements • Inspection and quality management • Maintenance and life extension • Ageing and environmental effects • Life management Of particular importance are papers covering aspects of significant practical application which could lead to major improvements in economy, reliability and useful life. While most accepted papers represent the results of original applied research, critical reviews of topical interest by world-leading experts will also appear from time to time. International Journal of Pressure Vessels and Piping is indispensable reading for engineering professionals involved in the energy, petrochemicals, process plant, transport, aerospace and related industries; for manufacturers of pressure vessels and ancillary equipment; and for academics pursuing research in these areas.
期刊最新文献
Enhanced creep lifetime in P91 steel weldments via stabilizing tempered martensite structure Study on stress concentration and fatigue life of tubing with slip indentation Failure mechanisms of fusion-bonded reinforcement joints in reinforced thermoplastic pipes under uniaxial tensile conditions A comprehensive finite element framework for modeling of PEX-Al-PEX composite pipes Effects of different types of corrosion on seismic performance of circular hollow section T-joints subjected to coupling load
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1