带支柱火焰稳定器的新型集成后燃烧器冷流特性的数值研究

IF 5 1区 工程技术 Q1 ENGINEERING, AEROSPACE Aerospace Science and Technology Pub Date : 2024-08-10 DOI:10.1016/j.ast.2024.109476
{"title":"带支柱火焰稳定器的新型集成后燃烧器冷流特性的数值研究","authors":"","doi":"10.1016/j.ast.2024.109476","DOIUrl":null,"url":null,"abstract":"<div><p>To further improve the performance of the afterburner, this study proposed a new scheme for the integrated afterburner with a strut flame stabilizer and a mixer. A numerical study was carried out to examine the cold performance of this scheme at different flight altitudes, inlet Mach numbers, and bypass ratios. The results showed that the integrated afterburner had a good flow field distribution with four low-speed recirculation zones formed at appropriate locations. The obstruction effect of the strut, airflow mixing, and vortex shedding were the main factors affecting the total pressure recovery performance. The total pressure recovery coefficient decreased with the increase in inlet Mach number, bypass ratio, and flight altitude. Nevertheless, the integrated afterburner maintained good total pressure recovery performance with a total pressure recovery coefficient greater than 0.965. The cold air at the outlet of the mixer on both sides of the strut formed a recirculation zone at the tail end of the strut, thereby improving the thermal mixing performance of the integrated afterburner. The thermal mixing efficiency increased with the bypass ratio and flight altitude, while it decreased with increasing inlet Mach number, but it was still higher than 0.80.</p></div>","PeriodicalId":50955,"journal":{"name":"Aerospace Science and Technology","volume":null,"pages":null},"PeriodicalIF":5.0000,"publicationDate":"2024-08-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Numerical study of cold flow characteristics of a new integrated afterburner with strut flame stabilizer\",\"authors\":\"\",\"doi\":\"10.1016/j.ast.2024.109476\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>To further improve the performance of the afterburner, this study proposed a new scheme for the integrated afterburner with a strut flame stabilizer and a mixer. A numerical study was carried out to examine the cold performance of this scheme at different flight altitudes, inlet Mach numbers, and bypass ratios. The results showed that the integrated afterburner had a good flow field distribution with four low-speed recirculation zones formed at appropriate locations. The obstruction effect of the strut, airflow mixing, and vortex shedding were the main factors affecting the total pressure recovery performance. The total pressure recovery coefficient decreased with the increase in inlet Mach number, bypass ratio, and flight altitude. Nevertheless, the integrated afterburner maintained good total pressure recovery performance with a total pressure recovery coefficient greater than 0.965. The cold air at the outlet of the mixer on both sides of the strut formed a recirculation zone at the tail end of the strut, thereby improving the thermal mixing performance of the integrated afterburner. The thermal mixing efficiency increased with the bypass ratio and flight altitude, while it decreased with increasing inlet Mach number, but it was still higher than 0.80.</p></div>\",\"PeriodicalId\":50955,\"journal\":{\"name\":\"Aerospace Science and Technology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":5.0000,\"publicationDate\":\"2024-08-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Aerospace Science and Technology\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1270963824006072\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, AEROSPACE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Aerospace Science and Technology","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1270963824006072","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, AEROSPACE","Score":null,"Total":0}
引用次数: 0

摘要

为了进一步提高后燃烧器的性能,本研究提出了一种带有支柱火焰稳定器和混合器的集成后燃烧器新方案。研究人员对该方案在不同飞行高度、进气马赫数和旁路比条件下的冷性能进行了数值研究。结果表明,集成后燃烧器具有良好的流场分布,在适当位置形成了四个低速再循环区。支杆的阻挡效应、气流混合和涡流脱落是影响总压恢复性能的主要因素。总压恢复系数随着进气马赫数、旁路比和飞行高度的增加而降低。尽管如此,集成后燃烧器仍保持了良好的总压恢复性能,总压恢复系数大于 0.965。支杆两侧混合器出口处的冷空气在支杆尾端形成了一个再循环区,从而改善了集成后燃烧器的热混合性能。热混合效率随旁路比和飞行高度的增加而提高,随进气马赫数的增加而降低,但仍高于 0.80。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Numerical study of cold flow characteristics of a new integrated afterburner with strut flame stabilizer

To further improve the performance of the afterburner, this study proposed a new scheme for the integrated afterburner with a strut flame stabilizer and a mixer. A numerical study was carried out to examine the cold performance of this scheme at different flight altitudes, inlet Mach numbers, and bypass ratios. The results showed that the integrated afterburner had a good flow field distribution with four low-speed recirculation zones formed at appropriate locations. The obstruction effect of the strut, airflow mixing, and vortex shedding were the main factors affecting the total pressure recovery performance. The total pressure recovery coefficient decreased with the increase in inlet Mach number, bypass ratio, and flight altitude. Nevertheless, the integrated afterburner maintained good total pressure recovery performance with a total pressure recovery coefficient greater than 0.965. The cold air at the outlet of the mixer on both sides of the strut formed a recirculation zone at the tail end of the strut, thereby improving the thermal mixing performance of the integrated afterburner. The thermal mixing efficiency increased with the bypass ratio and flight altitude, while it decreased with increasing inlet Mach number, but it was still higher than 0.80.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Aerospace Science and Technology
Aerospace Science and Technology 工程技术-工程:宇航
CiteScore
10.30
自引率
28.60%
发文量
654
审稿时长
54 days
期刊介绍: Aerospace Science and Technology publishes articles of outstanding scientific quality. Each article is reviewed by two referees. The journal welcomes papers from a wide range of countries. This journal publishes original papers, review articles and short communications related to all fields of aerospace research, fundamental and applied, potential applications of which are clearly related to: • The design and the manufacture of aircraft, helicopters, missiles, launchers and satellites • The control of their environment • The study of various systems they are involved in, as supports or as targets. Authors are invited to submit papers on new advances in the following topics to aerospace applications: • Fluid dynamics • Energetics and propulsion • Materials and structures • Flight mechanics • Navigation, guidance and control • Acoustics • Optics • Electromagnetism and radar • Signal and image processing • Information processing • Data fusion • Decision aid • Human behaviour • Robotics and intelligent systems • Complex system engineering. Etc.
期刊最新文献
Experimental study on loss and flow mechanism of variable stator vanes in high-pressure compressor with bleed Shock wave and fully turbulent boundary layer interaction controlled by surface arc plasma actuation Iterative control framework with application to guidance and attitude control of rockets Experimental and numerical study on the mechanism of leakage flow influence on the performance of high-speed diffuser cascade Point-enhanced convolutional neural network: A novel deep learning method for transonic wall-bounded flows
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1