Anna Maria Moran, Vi T. Vo, Kevin J. McDonald, Pranav Sultania, Eva Langenbrunner, Jun Hong Vince Chong, Amartya Naik, Lorenzo Kinnicutt, Jingshuo Li, Tommaso Ranzani
{"title":"用于多自由度气动软机器人机载控制的电永磁阀","authors":"Anna Maria Moran, Vi T. Vo, Kevin J. McDonald, Pranav Sultania, Eva Langenbrunner, Jun Hong Vince Chong, Amartya Naik, Lorenzo Kinnicutt, Jingshuo Li, Tommaso Ranzani","doi":"10.1038/s44172-024-00251-y","DOIUrl":null,"url":null,"abstract":"To achieve coordinated functions, fluidic soft robots typically rely on multiple input lines for the independent inflation and deflation of each actuator. Fluidic actuators are controlled by rigid electronic pneumatic valves, restricting the mobility and compliance of the soft robot. Recent developments in soft valve designs have shown the potential to achieve a more integrated robotic system, but are limited by high energy consumption and slow response time. In this work, we present an electropermanent magnet (EPM) valve for electronic control of pneumatic soft actuators that is activated through microsecond electronic pulses. The valve incorporates a thin channel made from thermoplastic films. The proposed valve (3 × 3 × 0.8 cm, 2.9 g) can block pressure up to 146 kPa and negative pressures up to –100 kPa with a response time of less than 1 s. Using the EPM valves, we demonstrate the ability to switch between multiple operation sequences in real time through the control of a six-DoF robot capable of grasping and hopping with a single pressure input. Our proposed onboard control strategy simplifies the operation of multi-pressure systems, enabling the development of dynamically programmable soft fluid-driven robots that are versatile in responding to different tasks. Ranzani and colleagues use electropermanent magnets to build a valve that simplifies the controls of pneumatic soft robots. Their design enables the selective activation of the robot’s fluidic channels to perform grasping and locomotion tasks.","PeriodicalId":72644,"journal":{"name":"Communications engineering","volume":" ","pages":"1-13"},"PeriodicalIF":0.0000,"publicationDate":"2024-08-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s44172-024-00251-y.pdf","citationCount":"0","resultStr":"{\"title\":\"An electropermanent magnet valve for the onboard control of multi-degree of freedom pneumatic soft robots\",\"authors\":\"Anna Maria Moran, Vi T. Vo, Kevin J. McDonald, Pranav Sultania, Eva Langenbrunner, Jun Hong Vince Chong, Amartya Naik, Lorenzo Kinnicutt, Jingshuo Li, Tommaso Ranzani\",\"doi\":\"10.1038/s44172-024-00251-y\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"To achieve coordinated functions, fluidic soft robots typically rely on multiple input lines for the independent inflation and deflation of each actuator. Fluidic actuators are controlled by rigid electronic pneumatic valves, restricting the mobility and compliance of the soft robot. Recent developments in soft valve designs have shown the potential to achieve a more integrated robotic system, but are limited by high energy consumption and slow response time. In this work, we present an electropermanent magnet (EPM) valve for electronic control of pneumatic soft actuators that is activated through microsecond electronic pulses. The valve incorporates a thin channel made from thermoplastic films. The proposed valve (3 × 3 × 0.8 cm, 2.9 g) can block pressure up to 146 kPa and negative pressures up to –100 kPa with a response time of less than 1 s. Using the EPM valves, we demonstrate the ability to switch between multiple operation sequences in real time through the control of a six-DoF robot capable of grasping and hopping with a single pressure input. Our proposed onboard control strategy simplifies the operation of multi-pressure systems, enabling the development of dynamically programmable soft fluid-driven robots that are versatile in responding to different tasks. Ranzani and colleagues use electropermanent magnets to build a valve that simplifies the controls of pneumatic soft robots. Their design enables the selective activation of the robot’s fluidic channels to perform grasping and locomotion tasks.\",\"PeriodicalId\":72644,\"journal\":{\"name\":\"Communications engineering\",\"volume\":\" \",\"pages\":\"1-13\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-08-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.nature.com/articles/s44172-024-00251-y.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Communications engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.nature.com/articles/s44172-024-00251-y\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications engineering","FirstCategoryId":"1085","ListUrlMain":"https://www.nature.com/articles/s44172-024-00251-y","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
An electropermanent magnet valve for the onboard control of multi-degree of freedom pneumatic soft robots
To achieve coordinated functions, fluidic soft robots typically rely on multiple input lines for the independent inflation and deflation of each actuator. Fluidic actuators are controlled by rigid electronic pneumatic valves, restricting the mobility and compliance of the soft robot. Recent developments in soft valve designs have shown the potential to achieve a more integrated robotic system, but are limited by high energy consumption and slow response time. In this work, we present an electropermanent magnet (EPM) valve for electronic control of pneumatic soft actuators that is activated through microsecond electronic pulses. The valve incorporates a thin channel made from thermoplastic films. The proposed valve (3 × 3 × 0.8 cm, 2.9 g) can block pressure up to 146 kPa and negative pressures up to –100 kPa with a response time of less than 1 s. Using the EPM valves, we demonstrate the ability to switch between multiple operation sequences in real time through the control of a six-DoF robot capable of grasping and hopping with a single pressure input. Our proposed onboard control strategy simplifies the operation of multi-pressure systems, enabling the development of dynamically programmable soft fluid-driven robots that are versatile in responding to different tasks. Ranzani and colleagues use electropermanent magnets to build a valve that simplifies the controls of pneumatic soft robots. Their design enables the selective activation of the robot’s fluidic channels to perform grasping and locomotion tasks.