模相匹配铌酸锂纳米波导中的高效片上量子光子源

IF 9.8 1区 物理与天体物理 Q1 OPTICS Laser & Photonics Reviews Pub Date : 2024-08-23 DOI:10.1002/lpor.202400782
Xiao‐Xu Fang, Hao‐Yang Du, Xiuquan Zhang, Lei Wang, Feng Chen, He Lu
{"title":"模相匹配铌酸锂纳米波导中的高效片上量子光子源","authors":"Xiao‐Xu Fang, Hao‐Yang Du, Xiuquan Zhang, Lei Wang, Feng Chen, He Lu","doi":"10.1002/lpor.202400782","DOIUrl":null,"url":null,"abstract":"Thin‐film lithium niobate on insulator (LNOI) emerges as a promising platform for integrated quantum photon source, enabling scalable on‐chip quantum information processing. The most popular technique to overcome the phase mismatching between interacting waves in waveguide is periodic poling, which is intrinsically sensitive to poling uniformity. Here, an alternative strategy to offset the phase mismatching of spontaneous parametric down‐conversion (SPDC) process, so‐called modal phase matching, in a straight waveguide fabricated on a dual‐layer LNOI is reported. The dual‐layer LNOI consists of two 300 nm lithium niobates with opposite directions, which significantly enhances the spatial overlap between fundamental and high‐order modes and thus enables efficient SPDC. This dual‐layer waveguide generates photon pairs with pair generation rate of 41.77 GHz , which exhibits excellent signal‐to‐noise performance with coincidence‐to‐accidental ratio up to 58298 1297. Moreover, a heralded single‐photon source with second‐order autocorrelation and heralded rate exceeding 100 kHz is observed. The results provide an experiment‐friendly approach for efficient generation of quantum photon sources and benefit the on‐chip quantum information processing based on LNOI.","PeriodicalId":204,"journal":{"name":"Laser & Photonics Reviews","volume":null,"pages":null},"PeriodicalIF":9.8000,"publicationDate":"2024-08-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"High‐Efficiency On‐Chip Quantum Photon Source in Modal Phase‐Matched Lithium Niobate Nanowaveguide\",\"authors\":\"Xiao‐Xu Fang, Hao‐Yang Du, Xiuquan Zhang, Lei Wang, Feng Chen, He Lu\",\"doi\":\"10.1002/lpor.202400782\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Thin‐film lithium niobate on insulator (LNOI) emerges as a promising platform for integrated quantum photon source, enabling scalable on‐chip quantum information processing. The most popular technique to overcome the phase mismatching between interacting waves in waveguide is periodic poling, which is intrinsically sensitive to poling uniformity. Here, an alternative strategy to offset the phase mismatching of spontaneous parametric down‐conversion (SPDC) process, so‐called modal phase matching, in a straight waveguide fabricated on a dual‐layer LNOI is reported. The dual‐layer LNOI consists of two 300 nm lithium niobates with opposite directions, which significantly enhances the spatial overlap between fundamental and high‐order modes and thus enables efficient SPDC. This dual‐layer waveguide generates photon pairs with pair generation rate of 41.77 GHz , which exhibits excellent signal‐to‐noise performance with coincidence‐to‐accidental ratio up to 58298 1297. Moreover, a heralded single‐photon source with second‐order autocorrelation and heralded rate exceeding 100 kHz is observed. The results provide an experiment‐friendly approach for efficient generation of quantum photon sources and benefit the on‐chip quantum information processing based on LNOI.\",\"PeriodicalId\":204,\"journal\":{\"name\":\"Laser & Photonics Reviews\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":9.8000,\"publicationDate\":\"2024-08-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Laser & Photonics Reviews\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1002/lpor.202400782\",\"RegionNum\":1,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"OPTICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Laser & Photonics Reviews","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1002/lpor.202400782","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"OPTICS","Score":null,"Total":0}
引用次数: 0

摘要

绝缘体上的薄膜铌酸锂(LNOI)是一种很有前途的集成量子光子源平台,可实现可扩展的片上量子信息处理。克服波导中相互作用波之间相位失配的最常用技术是周期性极化,而周期性极化对极化均匀性非常敏感。本文报告了在双层 LNOI 上制造的直波导中抵消自发参量下变频(SPDC)过程相位失配的另一种策略,即所谓的模态相位匹配。双层铌酸锂绝缘层由两个方向相反的 300 纳米铌酸锂组成,这大大增强了基阶和高阶模式之间的空间重叠,从而实现了高效的 SPDC。这种双层波导能产生光子对,光子对产生率高达 41.77 GHz,表现出卓越的信噪比性能,巧合比高达 58298 1297。此外,还观测到具有二阶自相关性的预示单光子源,其预示率超过 100 kHz。这些结果为高效生成量子光子源提供了一种实验友好型方法,并有利于基于 LNOI 的片上量子信息处理。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
High‐Efficiency On‐Chip Quantum Photon Source in Modal Phase‐Matched Lithium Niobate Nanowaveguide
Thin‐film lithium niobate on insulator (LNOI) emerges as a promising platform for integrated quantum photon source, enabling scalable on‐chip quantum information processing. The most popular technique to overcome the phase mismatching between interacting waves in waveguide is periodic poling, which is intrinsically sensitive to poling uniformity. Here, an alternative strategy to offset the phase mismatching of spontaneous parametric down‐conversion (SPDC) process, so‐called modal phase matching, in a straight waveguide fabricated on a dual‐layer LNOI is reported. The dual‐layer LNOI consists of two 300 nm lithium niobates with opposite directions, which significantly enhances the spatial overlap between fundamental and high‐order modes and thus enables efficient SPDC. This dual‐layer waveguide generates photon pairs with pair generation rate of 41.77 GHz , which exhibits excellent signal‐to‐noise performance with coincidence‐to‐accidental ratio up to 58298 1297. Moreover, a heralded single‐photon source with second‐order autocorrelation and heralded rate exceeding 100 kHz is observed. The results provide an experiment‐friendly approach for efficient generation of quantum photon sources and benefit the on‐chip quantum information processing based on LNOI.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
14.20
自引率
5.50%
发文量
314
审稿时长
2 months
期刊介绍: Laser & Photonics Reviews is a reputable journal that publishes high-quality Reviews, original Research Articles, and Perspectives in the field of photonics and optics. It covers both theoretical and experimental aspects, including recent groundbreaking research, specific advancements, and innovative applications. As evidence of its impact and recognition, Laser & Photonics Reviews boasts a remarkable 2022 Impact Factor of 11.0, according to the Journal Citation Reports from Clarivate Analytics (2023). Moreover, it holds impressive rankings in the InCites Journal Citation Reports: in 2021, it was ranked 6th out of 101 in the field of Optics, 15th out of 161 in Applied Physics, and 12th out of 69 in Condensed Matter Physics. The journal uses the ISSN numbers 1863-8880 for print and 1863-8899 for online publications.
期刊最新文献
Thermally‐Switchable Metalenses Based on Quasi‐Bound States in the Continuum Wavelength‐switchable synchronously pumped Raman fiber laser near 1.7 µm for multispectral photoacoustic microscopy Abnormal Lattice Shrinkage, Site Occupation, and Luminescent Properties of Cr3+-Activated β-Al2O3 Structure Phosphors Resource-Saving and High-Robustness Image Sensing Based on Binary Optical Computing 2D Black Phosphorus Infrared Photodetectors
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1