光纤尖腔中的纳升级光-物质相互作用实现了灵敏的光热气体检测

IF 9.8 1区 物理与天体物理 Q1 OPTICS Laser & Photonics Reviews Pub Date : 2024-08-23 DOI:10.1002/lpor.202400907
Yue Yan, Xunzhou Xiao, Qinxue Nie, Zhen Wang, Yifan Chen, Jiahao Wu, Nansen Zhou, Renjie Zhou, Sen Yang, Wei Ren
{"title":"光纤尖腔中的纳升级光-物质相互作用实现了灵敏的光热气体检测","authors":"Yue Yan, Xunzhou Xiao, Qinxue Nie, Zhen Wang, Yifan Chen, Jiahao Wu, Nansen Zhou, Renjie Zhou, Sen Yang, Wei Ren","doi":"10.1002/lpor.202400907","DOIUrl":null,"url":null,"abstract":"Laser spectroscopy offers a significant tool for revealing specific molecular details with the desired accuracy and sensitivity. However, it poses challenges to maintain high sensitivity when targeting a micro‐region. Here, a dual‐enhanced photothermal approach is presented using a high‐finesse fiber Fabry–Pérot (F–P) cavity, tailored for highly sensitive chemical sensing with nanoliter‐scale light–matter interaction. A spheric surface (diameter: 50 µm, radius of curvature: 910 µm) is created on the fiber tip using focused ion beam milling. By adding a high‐reflectivity dielectric coating to the spheric surface, a fiber F–P cavity is obtained with a length of 473 µm and a finesse exceeding 4000. The intra‐cavity pump light within the gas‐filled fiber cavity generates a strong photothermal effect upon gas absorption. This effect induces phase modulation, which is amplified and detected by coupling a probe laser to the fiber cavity‐based interferometer. A minimum detection limit of 10 parts‐per‐billion (ppb) of C<jats:sub>2</jats:sub>H<jats:sub>2</jats:sub> at 1530.37 nm is demonstrated using only 1 mW of pump power, corresponding to a normalized noise equivalent absorption coefficient of 9.1×10<jats:sup>−11</jats:sup> cm<jats:sup>−1</jats:sup>∙W∙Hz<jats:sup>−1/2</jats:sup>. This platform breaks the bottleneck of ultrasensitive gas detection with a very short light–matter interaction length, promising significant advancements in microscale chemical analysis through optical investigations.","PeriodicalId":204,"journal":{"name":"Laser & Photonics Reviews","volume":null,"pages":null},"PeriodicalIF":9.8000,"publicationDate":"2024-08-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Nanoliter‐Scale Light–Matter Interaction in a Fiber‐Tip Cavity Enables Sensitive Photothermal Gas Detection\",\"authors\":\"Yue Yan, Xunzhou Xiao, Qinxue Nie, Zhen Wang, Yifan Chen, Jiahao Wu, Nansen Zhou, Renjie Zhou, Sen Yang, Wei Ren\",\"doi\":\"10.1002/lpor.202400907\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Laser spectroscopy offers a significant tool for revealing specific molecular details with the desired accuracy and sensitivity. However, it poses challenges to maintain high sensitivity when targeting a micro‐region. Here, a dual‐enhanced photothermal approach is presented using a high‐finesse fiber Fabry–Pérot (F–P) cavity, tailored for highly sensitive chemical sensing with nanoliter‐scale light–matter interaction. A spheric surface (diameter: 50 µm, radius of curvature: 910 µm) is created on the fiber tip using focused ion beam milling. By adding a high‐reflectivity dielectric coating to the spheric surface, a fiber F–P cavity is obtained with a length of 473 µm and a finesse exceeding 4000. The intra‐cavity pump light within the gas‐filled fiber cavity generates a strong photothermal effect upon gas absorption. This effect induces phase modulation, which is amplified and detected by coupling a probe laser to the fiber cavity‐based interferometer. A minimum detection limit of 10 parts‐per‐billion (ppb) of C<jats:sub>2</jats:sub>H<jats:sub>2</jats:sub> at 1530.37 nm is demonstrated using only 1 mW of pump power, corresponding to a normalized noise equivalent absorption coefficient of 9.1×10<jats:sup>−11</jats:sup> cm<jats:sup>−1</jats:sup>∙W∙Hz<jats:sup>−1/2</jats:sup>. This platform breaks the bottleneck of ultrasensitive gas detection with a very short light–matter interaction length, promising significant advancements in microscale chemical analysis through optical investigations.\",\"PeriodicalId\":204,\"journal\":{\"name\":\"Laser & Photonics Reviews\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":9.8000,\"publicationDate\":\"2024-08-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Laser & Photonics Reviews\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1002/lpor.202400907\",\"RegionNum\":1,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"OPTICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Laser & Photonics Reviews","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1002/lpor.202400907","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"OPTICS","Score":null,"Total":0}
引用次数: 0

摘要

激光光谱学是一种重要工具,能以所需的精确度和灵敏度揭示特定分子的细节。然而,在以微区为目标时,保持高灵敏度是一项挑战。本文介绍了一种双重增强的光热方法,该方法采用高精细光纤法布里-佩罗(F-P)腔,专为纳升尺度光-物质相互作用的高灵敏度化学传感而定制。利用聚焦离子束铣削技术在光纤顶端创建了一个球形表面(直径:50 微米,曲率半径:910 微米)。通过在球面上添加高反射率电介质涂层,获得了长度为 473 微米、精细度超过 4000 的光纤 F-P 腔。充气光纤腔内的腔内泵浦光在吸收气体后会产生强烈的光热效应。这种效应会引起相位调制,通过将探针激光器耦合到光纤腔基干涉仪,可对相位调制进行放大和检测。在 1530.37 nm 波长处,仅用 1 mW 的泵浦功率就能达到 10 ppb 的 C2H2 最低检测限,相当于 9.1×10-11 cm-1∙W∙Hz-1/2 的归一化噪声等效吸收系数。该平台以极短的光-物质相互作用长度打破了超灵敏气体检测的瓶颈,有望在通过光学研究进行微尺度化学分析方面取得重大进展。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Nanoliter‐Scale Light–Matter Interaction in a Fiber‐Tip Cavity Enables Sensitive Photothermal Gas Detection
Laser spectroscopy offers a significant tool for revealing specific molecular details with the desired accuracy and sensitivity. However, it poses challenges to maintain high sensitivity when targeting a micro‐region. Here, a dual‐enhanced photothermal approach is presented using a high‐finesse fiber Fabry–Pérot (F–P) cavity, tailored for highly sensitive chemical sensing with nanoliter‐scale light–matter interaction. A spheric surface (diameter: 50 µm, radius of curvature: 910 µm) is created on the fiber tip using focused ion beam milling. By adding a high‐reflectivity dielectric coating to the spheric surface, a fiber F–P cavity is obtained with a length of 473 µm and a finesse exceeding 4000. The intra‐cavity pump light within the gas‐filled fiber cavity generates a strong photothermal effect upon gas absorption. This effect induces phase modulation, which is amplified and detected by coupling a probe laser to the fiber cavity‐based interferometer. A minimum detection limit of 10 parts‐per‐billion (ppb) of C2H2 at 1530.37 nm is demonstrated using only 1 mW of pump power, corresponding to a normalized noise equivalent absorption coefficient of 9.1×10−11 cm−1∙W∙Hz−1/2. This platform breaks the bottleneck of ultrasensitive gas detection with a very short light–matter interaction length, promising significant advancements in microscale chemical analysis through optical investigations.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
14.20
自引率
5.50%
发文量
314
审稿时长
2 months
期刊介绍: Laser & Photonics Reviews is a reputable journal that publishes high-quality Reviews, original Research Articles, and Perspectives in the field of photonics and optics. It covers both theoretical and experimental aspects, including recent groundbreaking research, specific advancements, and innovative applications. As evidence of its impact and recognition, Laser & Photonics Reviews boasts a remarkable 2022 Impact Factor of 11.0, according to the Journal Citation Reports from Clarivate Analytics (2023). Moreover, it holds impressive rankings in the InCites Journal Citation Reports: in 2021, it was ranked 6th out of 101 in the field of Optics, 15th out of 161 in Applied Physics, and 12th out of 69 in Condensed Matter Physics. The journal uses the ISSN numbers 1863-8880 for print and 1863-8899 for online publications.
期刊最新文献
Thermally‐Switchable Metalenses Based on Quasi‐Bound States in the Continuum Wavelength‐switchable synchronously pumped Raman fiber laser near 1.7 µm for multispectral photoacoustic microscopy Abnormal Lattice Shrinkage, Site Occupation, and Luminescent Properties of Cr3+-Activated β-Al2O3 Structure Phosphors Resource-Saving and High-Robustness Image Sensing Based on Binary Optical Computing 2D Black Phosphorus Infrared Photodetectors
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1