浮游有孔虫集合体在 70 万年气候变化中的空间异质性响应

IF 6.3 1区 环境科学与生态学 Q1 ECOLOGY Global Ecology and Biogeography Pub Date : 2024-08-19 DOI:10.1111/geb.13905
Gregor H. Mathes, Carl J. Reddin, Wolfgang Kiessling, Gawain S. Antell, Erin E. Saupe, Manuel J. Steinbauer
{"title":"浮游有孔虫集合体在 70 万年气候变化中的空间异质性响应","authors":"Gregor H. Mathes,&nbsp;Carl J. Reddin,&nbsp;Wolfgang Kiessling,&nbsp;Gawain S. Antell,&nbsp;Erin E. Saupe,&nbsp;Manuel J. Steinbauer","doi":"10.1111/geb.13905","DOIUrl":null,"url":null,"abstract":"<div>\n \n \n <section>\n \n <h3> Aim</h3>\n \n <p>To determine the degree to which assemblages of planktonic foraminifera track thermal conditions.</p>\n </section>\n \n <section>\n \n <h3> Location</h3>\n \n <p>The world's oceans.</p>\n </section>\n \n <section>\n \n <h3> Time Period</h3>\n \n <p>The last 700,000 years of glacial–interglacial cycles.</p>\n </section>\n \n <section>\n \n <h3> Major Taxa Studied</h3>\n \n <p>Planktonic foraminifera.</p>\n </section>\n \n <section>\n \n <h3> Methods</h3>\n \n <p>We investigate assemblage dynamics in planktonic foraminifera in response to temperature changes using a global dataset of Quaternary planktonic foraminifera, together with a coupled Atmosphere–Ocean General Circulation Model (AOGCM) at 8000-year resolution. We use ‘thermal deviance’ to assess assemblage responses to climate change, defined as the difference between the temperature at a given location and the bio-indicated temperature (i.e., the abundance-weighted average of estimated temperature optima for the species present).</p>\n </section>\n \n <section>\n \n <h3> Results</h3>\n \n <p>Assemblages generally tracked annual mean temperature changes through compositional turnover, but thermal deviances are evident under certain conditions. The coldest-adapted species persisted in polar regions during warming but were not joined by additional immigrants, resulting in minimal assemblage turnover. The warmest-adapted species persisted in equatorial regions during cooling with similarly minimal assemblage change. Assemblages at mid-latitudes mostly tracked temperature cooling and warming.</p>\n </section>\n \n <section>\n \n <h3> Main Conclusions</h3>\n \n <p>Planktonic foraminiferal assemblages were generally able to track or endure temperature changes: as climate warmed or cooled, bio-indicated temperature also became warmer or cooler, although to a variable degree. At polar sites under warming and at equatorial sites under cooling, the change in bio-indicated temperature was less than, or even opposite to, what would be expected from estimated environmental change. Nevertheless, all studied species persisted across the study interval, regardless of thermal deviance—a result that highlights the resilience and inertia of planktonic foraminifera on an assemblage level to the last 700,000 years of climate change.</p>\n </section>\n </div>","PeriodicalId":176,"journal":{"name":"Global Ecology and Biogeography","volume":"33 11","pages":""},"PeriodicalIF":6.3000,"publicationDate":"2024-08-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/geb.13905","citationCount":"0","resultStr":"{\"title\":\"Spatially Heterogeneous Responses of Planktonic Foraminiferal Assemblages Over 700,000 Years of Climate Change\",\"authors\":\"Gregor H. Mathes,&nbsp;Carl J. Reddin,&nbsp;Wolfgang Kiessling,&nbsp;Gawain S. Antell,&nbsp;Erin E. Saupe,&nbsp;Manuel J. Steinbauer\",\"doi\":\"10.1111/geb.13905\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div>\\n \\n \\n <section>\\n \\n <h3> Aim</h3>\\n \\n <p>To determine the degree to which assemblages of planktonic foraminifera track thermal conditions.</p>\\n </section>\\n \\n <section>\\n \\n <h3> Location</h3>\\n \\n <p>The world's oceans.</p>\\n </section>\\n \\n <section>\\n \\n <h3> Time Period</h3>\\n \\n <p>The last 700,000 years of glacial–interglacial cycles.</p>\\n </section>\\n \\n <section>\\n \\n <h3> Major Taxa Studied</h3>\\n \\n <p>Planktonic foraminifera.</p>\\n </section>\\n \\n <section>\\n \\n <h3> Methods</h3>\\n \\n <p>We investigate assemblage dynamics in planktonic foraminifera in response to temperature changes using a global dataset of Quaternary planktonic foraminifera, together with a coupled Atmosphere–Ocean General Circulation Model (AOGCM) at 8000-year resolution. We use ‘thermal deviance’ to assess assemblage responses to climate change, defined as the difference between the temperature at a given location and the bio-indicated temperature (i.e., the abundance-weighted average of estimated temperature optima for the species present).</p>\\n </section>\\n \\n <section>\\n \\n <h3> Results</h3>\\n \\n <p>Assemblages generally tracked annual mean temperature changes through compositional turnover, but thermal deviances are evident under certain conditions. The coldest-adapted species persisted in polar regions during warming but were not joined by additional immigrants, resulting in minimal assemblage turnover. The warmest-adapted species persisted in equatorial regions during cooling with similarly minimal assemblage change. Assemblages at mid-latitudes mostly tracked temperature cooling and warming.</p>\\n </section>\\n \\n <section>\\n \\n <h3> Main Conclusions</h3>\\n \\n <p>Planktonic foraminiferal assemblages were generally able to track or endure temperature changes: as climate warmed or cooled, bio-indicated temperature also became warmer or cooler, although to a variable degree. At polar sites under warming and at equatorial sites under cooling, the change in bio-indicated temperature was less than, or even opposite to, what would be expected from estimated environmental change. Nevertheless, all studied species persisted across the study interval, regardless of thermal deviance—a result that highlights the resilience and inertia of planktonic foraminifera on an assemblage level to the last 700,000 years of climate change.</p>\\n </section>\\n </div>\",\"PeriodicalId\":176,\"journal\":{\"name\":\"Global Ecology and Biogeography\",\"volume\":\"33 11\",\"pages\":\"\"},\"PeriodicalIF\":6.3000,\"publicationDate\":\"2024-08-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1111/geb.13905\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Global Ecology and Biogeography\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1111/geb.13905\",\"RegionNum\":1,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ECOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Global Ecology and Biogeography","FirstCategoryId":"93","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/geb.13905","RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ECOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

确定浮游有孔虫集合体对热条件的追踪程度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Spatially Heterogeneous Responses of Planktonic Foraminiferal Assemblages Over 700,000 Years of Climate Change

Aim

To determine the degree to which assemblages of planktonic foraminifera track thermal conditions.

Location

The world's oceans.

Time Period

The last 700,000 years of glacial–interglacial cycles.

Major Taxa Studied

Planktonic foraminifera.

Methods

We investigate assemblage dynamics in planktonic foraminifera in response to temperature changes using a global dataset of Quaternary planktonic foraminifera, together with a coupled Atmosphere–Ocean General Circulation Model (AOGCM) at 8000-year resolution. We use ‘thermal deviance’ to assess assemblage responses to climate change, defined as the difference between the temperature at a given location and the bio-indicated temperature (i.e., the abundance-weighted average of estimated temperature optima for the species present).

Results

Assemblages generally tracked annual mean temperature changes through compositional turnover, but thermal deviances are evident under certain conditions. The coldest-adapted species persisted in polar regions during warming but were not joined by additional immigrants, resulting in minimal assemblage turnover. The warmest-adapted species persisted in equatorial regions during cooling with similarly minimal assemblage change. Assemblages at mid-latitudes mostly tracked temperature cooling and warming.

Main Conclusions

Planktonic foraminiferal assemblages were generally able to track or endure temperature changes: as climate warmed or cooled, bio-indicated temperature also became warmer or cooler, although to a variable degree. At polar sites under warming and at equatorial sites under cooling, the change in bio-indicated temperature was less than, or even opposite to, what would be expected from estimated environmental change. Nevertheless, all studied species persisted across the study interval, regardless of thermal deviance—a result that highlights the resilience and inertia of planktonic foraminifera on an assemblage level to the last 700,000 years of climate change.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Global Ecology and Biogeography
Global Ecology and Biogeography 环境科学-生态学
CiteScore
12.10
自引率
3.10%
发文量
170
审稿时长
3 months
期刊介绍: Global Ecology and Biogeography (GEB) welcomes papers that investigate broad-scale (in space, time and/or taxonomy), general patterns in the organization of ecological systems and assemblages, and the processes that underlie them. In particular, GEB welcomes studies that use macroecological methods, comparative analyses, meta-analyses, reviews, spatial analyses and modelling to arrive at general, conceptual conclusions. Studies in GEB need not be global in spatial extent, but the conclusions and implications of the study must be relevant to ecologists and biogeographers globally, rather than being limited to local areas, or specific taxa. Similarly, GEB is not limited to spatial studies; we are equally interested in the general patterns of nature through time, among taxa (e.g., body sizes, dispersal abilities), through the course of evolution, etc. Further, GEB welcomes papers that investigate general impacts of human activities on ecological systems in accordance with the above criteria.
期刊最新文献
Fine-Grain Predictions Are Key to Accurately Represent Continental-Scale Biodiversity Patterns Issue Information Thermal Forcing Versus Chilling? Misspecification of Temperature Controls in Spring Phenology Models Predicting Landscape Conversion Impact on Small Mammal Occurrence and the Transmission of Parasites in the Atlantic Forest Spatial Variation in Upper Limits of Coral Cover on the Great Barrier Reef
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1