Jia-Hui Wang, Quan Sun, Chang-Ning Ma, Meng-Meng Wei, Chu-Kun Wang, Yu-Wen Zhao, Wen-Yan Wang, Da-Gang Hu
{"title":"MdWRKY31-MdNAC7调控网络:通过调节细胞壁修饰酶MdXTH2响应乙烯信号来协调果实软化。","authors":"Jia-Hui Wang, Quan Sun, Chang-Ning Ma, Meng-Meng Wei, Chu-Kun Wang, Yu-Wen Zhao, Wen-Yan Wang, Da-Gang Hu","doi":"10.1111/pbi.14445","DOIUrl":null,"url":null,"abstract":"<p><p>Softening in fruit adversely impacts their edible quality and commercial value, leading to substantial economic losses during fruit ripening, long-term storage, long-distance transportation, and marketing. As the apple fruit demonstrates climacteric respiration, its firmness decreases with increasing ethylene release rate during fruit ripening and postharvest storage. However, the molecular mechanisms underlying ethylene-mediated regulation of fruit softening in apple remain poorly understood. In this study, we identified a WRKY transcription factor (TF) MdWRKY31, which is repressed by ethylene treatment. Using transgenic approaches, we found that overexpression of MdWRKY31 delays softening by negatively regulating xyloglucan endotransglucosylase/hydrolases 2 (MdXTH2) expression. Yeast one-hybrid (Y1H), electrophoretic mobility shift (EMSA), and dual-luciferase assays further suggested that MdWRKY31 directly binds to the MdXTH2 promoter via a W-box element and represses its transcription. Transient overexpression of ethylene-induced MdNAC7, a NAC TF, in apple fruit promoted softening by decreasing cellulose content and increasing water-soluble pectin content in fruit. MdNAC7 interacted with MdWRKY31 to form a protein complex, and their interaction decreased the transcriptional repression of MdWRKY31 on MdXTH2. Furthermore, MdNAC7 does not directly regulate MdXTH2 expression, but the protein complex formed with MdWRKY31 hinders MdWRKY31 from binding to the promoter of MdXTH2. Our findings underscore the significance of the regulatory complex NAC7-WRKY31 in ethylene-responsive signalling, connecting the ethylene signal to XTH2 expression to promote fruit softening. This sheds light on the intricate mechanisms governing apple fruit firmness and opens avenues for enhancing fruit quality and reducing economic losses associated with softening.</p>","PeriodicalId":221,"journal":{"name":"Plant Biotechnology Journal","volume":" ","pages":""},"PeriodicalIF":10.1000,"publicationDate":"2024-08-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"MdWRKY31-MdNAC7 regulatory network: orchestrating fruit softening by modulating cell wall-modifying enzyme MdXTH2 in response to ethylene signalling.\",\"authors\":\"Jia-Hui Wang, Quan Sun, Chang-Ning Ma, Meng-Meng Wei, Chu-Kun Wang, Yu-Wen Zhao, Wen-Yan Wang, Da-Gang Hu\",\"doi\":\"10.1111/pbi.14445\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Softening in fruit adversely impacts their edible quality and commercial value, leading to substantial economic losses during fruit ripening, long-term storage, long-distance transportation, and marketing. As the apple fruit demonstrates climacteric respiration, its firmness decreases with increasing ethylene release rate during fruit ripening and postharvest storage. However, the molecular mechanisms underlying ethylene-mediated regulation of fruit softening in apple remain poorly understood. In this study, we identified a WRKY transcription factor (TF) MdWRKY31, which is repressed by ethylene treatment. Using transgenic approaches, we found that overexpression of MdWRKY31 delays softening by negatively regulating xyloglucan endotransglucosylase/hydrolases 2 (MdXTH2) expression. Yeast one-hybrid (Y1H), electrophoretic mobility shift (EMSA), and dual-luciferase assays further suggested that MdWRKY31 directly binds to the MdXTH2 promoter via a W-box element and represses its transcription. Transient overexpression of ethylene-induced MdNAC7, a NAC TF, in apple fruit promoted softening by decreasing cellulose content and increasing water-soluble pectin content in fruit. MdNAC7 interacted with MdWRKY31 to form a protein complex, and their interaction decreased the transcriptional repression of MdWRKY31 on MdXTH2. Furthermore, MdNAC7 does not directly regulate MdXTH2 expression, but the protein complex formed with MdWRKY31 hinders MdWRKY31 from binding to the promoter of MdXTH2. Our findings underscore the significance of the regulatory complex NAC7-WRKY31 in ethylene-responsive signalling, connecting the ethylene signal to XTH2 expression to promote fruit softening. This sheds light on the intricate mechanisms governing apple fruit firmness and opens avenues for enhancing fruit quality and reducing economic losses associated with softening.</p>\",\"PeriodicalId\":221,\"journal\":{\"name\":\"Plant Biotechnology Journal\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":10.1000,\"publicationDate\":\"2024-08-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Plant Biotechnology Journal\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1111/pbi.14445\",\"RegionNum\":1,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOTECHNOLOGY & APPLIED MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Plant Biotechnology Journal","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1111/pbi.14445","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
MdWRKY31-MdNAC7 regulatory network: orchestrating fruit softening by modulating cell wall-modifying enzyme MdXTH2 in response to ethylene signalling.
Softening in fruit adversely impacts their edible quality and commercial value, leading to substantial economic losses during fruit ripening, long-term storage, long-distance transportation, and marketing. As the apple fruit demonstrates climacteric respiration, its firmness decreases with increasing ethylene release rate during fruit ripening and postharvest storage. However, the molecular mechanisms underlying ethylene-mediated regulation of fruit softening in apple remain poorly understood. In this study, we identified a WRKY transcription factor (TF) MdWRKY31, which is repressed by ethylene treatment. Using transgenic approaches, we found that overexpression of MdWRKY31 delays softening by negatively regulating xyloglucan endotransglucosylase/hydrolases 2 (MdXTH2) expression. Yeast one-hybrid (Y1H), electrophoretic mobility shift (EMSA), and dual-luciferase assays further suggested that MdWRKY31 directly binds to the MdXTH2 promoter via a W-box element and represses its transcription. Transient overexpression of ethylene-induced MdNAC7, a NAC TF, in apple fruit promoted softening by decreasing cellulose content and increasing water-soluble pectin content in fruit. MdNAC7 interacted with MdWRKY31 to form a protein complex, and their interaction decreased the transcriptional repression of MdWRKY31 on MdXTH2. Furthermore, MdNAC7 does not directly regulate MdXTH2 expression, but the protein complex formed with MdWRKY31 hinders MdWRKY31 from binding to the promoter of MdXTH2. Our findings underscore the significance of the regulatory complex NAC7-WRKY31 in ethylene-responsive signalling, connecting the ethylene signal to XTH2 expression to promote fruit softening. This sheds light on the intricate mechanisms governing apple fruit firmness and opens avenues for enhancing fruit quality and reducing economic losses associated with softening.
期刊介绍:
Plant Biotechnology Journal aspires to publish original research and insightful reviews of high impact, authored by prominent researchers in applied plant science. The journal places a special emphasis on molecular plant sciences and their practical applications through plant biotechnology. Our goal is to establish a platform for showcasing significant advances in the field, encompassing curiosity-driven studies with potential applications, strategic research in plant biotechnology, scientific analysis of crucial issues for the beneficial utilization of plant sciences, and assessments of the performance of plant biotechnology products in practical applications.