{"title":"3-1-3 基于权重平均技术的深度神经网络性能评估,利用结构性核磁共振成像检测阿尔茨海默病。","authors":"Priyanka Gautam, Manjeet Singh","doi":"10.1088/2057-1976/ad72f7","DOIUrl":null,"url":null,"abstract":"<p><p>Alzheimer's disease (AD) is a progressive neurological disorder. It is identified by the gradual shrinkage of the brain and the loss of brain cells. This leads to cognitive decline and impaired social functioning, making it a major contributor to dementia. While there are no treatments to reverse AD's progression, spotting the disease's onset can have a significant impact in the medical field. Deep learning (DL) has revolutionized medical image classification by automating feature engineering, removing the requirement for human experts in feature extraction. DL-based solutions are highly accurate but demand a lot of training data, which poses a common challenge. Transfer learning (TL) has gained attention for its knack for handling limited data and expediting model training. This study uses TL to classify AD using T1-weighted 3D Magnetic Resonance Imaging (MRI) from the Alzheimer's Disease Neuroimaging (ADNI) database. Four modified pre-trained deep neural networks (DNN), VGG16, MobileNet, DenseNet121, and NASNetMobile, are trained and evaluated on the ADNI dataset. The 3-1-3 weight averaging technique and fine-tuning improve the performance of the classification models. The evaluated accuracies for AD classification are VGG16: 98.75%; MobileNet: 97.5%; DenseNet: 97.5%; and NASNetMobile: 96.25%. The receiver operating characteristic (ROC), precision-recall (PR), and Kolmogorov-Smirnov (KS) statistic plots validate the effectiveness of the modified pre-trained model. Modified VGG16 excels with area under the curve (AUC) values of 0.99 for ROC and 0.998 for PR curves. The proposed approach shows effective AD classification by achieving high accuracy using the 3-1-3 weight averaging technique and fine-tuning.</p>","PeriodicalId":8896,"journal":{"name":"Biomedical Physics & Engineering Express","volume":" ","pages":""},"PeriodicalIF":1.3000,"publicationDate":"2024-09-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"3-1-3 Weight averaging technique-based performance evaluation of deep neural networks for Alzheimer's disease detection using structural MRI.\",\"authors\":\"Priyanka Gautam, Manjeet Singh\",\"doi\":\"10.1088/2057-1976/ad72f7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Alzheimer's disease (AD) is a progressive neurological disorder. It is identified by the gradual shrinkage of the brain and the loss of brain cells. This leads to cognitive decline and impaired social functioning, making it a major contributor to dementia. While there are no treatments to reverse AD's progression, spotting the disease's onset can have a significant impact in the medical field. Deep learning (DL) has revolutionized medical image classification by automating feature engineering, removing the requirement for human experts in feature extraction. DL-based solutions are highly accurate but demand a lot of training data, which poses a common challenge. Transfer learning (TL) has gained attention for its knack for handling limited data and expediting model training. This study uses TL to classify AD using T1-weighted 3D Magnetic Resonance Imaging (MRI) from the Alzheimer's Disease Neuroimaging (ADNI) database. Four modified pre-trained deep neural networks (DNN), VGG16, MobileNet, DenseNet121, and NASNetMobile, are trained and evaluated on the ADNI dataset. The 3-1-3 weight averaging technique and fine-tuning improve the performance of the classification models. The evaluated accuracies for AD classification are VGG16: 98.75%; MobileNet: 97.5%; DenseNet: 97.5%; and NASNetMobile: 96.25%. The receiver operating characteristic (ROC), precision-recall (PR), and Kolmogorov-Smirnov (KS) statistic plots validate the effectiveness of the modified pre-trained model. Modified VGG16 excels with area under the curve (AUC) values of 0.99 for ROC and 0.998 for PR curves. The proposed approach shows effective AD classification by achieving high accuracy using the 3-1-3 weight averaging technique and fine-tuning.</p>\",\"PeriodicalId\":8896,\"journal\":{\"name\":\"Biomedical Physics & Engineering Express\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2024-09-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biomedical Physics & Engineering Express\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1088/2057-1976/ad72f7\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomedical Physics & Engineering Express","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1088/2057-1976/ad72f7","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING","Score":null,"Total":0}
3-1-3 Weight averaging technique-based performance evaluation of deep neural networks for Alzheimer's disease detection using structural MRI.
Alzheimer's disease (AD) is a progressive neurological disorder. It is identified by the gradual shrinkage of the brain and the loss of brain cells. This leads to cognitive decline and impaired social functioning, making it a major contributor to dementia. While there are no treatments to reverse AD's progression, spotting the disease's onset can have a significant impact in the medical field. Deep learning (DL) has revolutionized medical image classification by automating feature engineering, removing the requirement for human experts in feature extraction. DL-based solutions are highly accurate but demand a lot of training data, which poses a common challenge. Transfer learning (TL) has gained attention for its knack for handling limited data and expediting model training. This study uses TL to classify AD using T1-weighted 3D Magnetic Resonance Imaging (MRI) from the Alzheimer's Disease Neuroimaging (ADNI) database. Four modified pre-trained deep neural networks (DNN), VGG16, MobileNet, DenseNet121, and NASNetMobile, are trained and evaluated on the ADNI dataset. The 3-1-3 weight averaging technique and fine-tuning improve the performance of the classification models. The evaluated accuracies for AD classification are VGG16: 98.75%; MobileNet: 97.5%; DenseNet: 97.5%; and NASNetMobile: 96.25%. The receiver operating characteristic (ROC), precision-recall (PR), and Kolmogorov-Smirnov (KS) statistic plots validate the effectiveness of the modified pre-trained model. Modified VGG16 excels with area under the curve (AUC) values of 0.99 for ROC and 0.998 for PR curves. The proposed approach shows effective AD classification by achieving high accuracy using the 3-1-3 weight averaging technique and fine-tuning.
期刊介绍:
BPEX is an inclusive, international, multidisciplinary journal devoted to publishing new research on any application of physics and/or engineering in medicine and/or biology. Characterized by a broad geographical coverage and a fast-track peer-review process, relevant topics include all aspects of biophysics, medical physics and biomedical engineering. Papers that are almost entirely clinical or biological in their focus are not suitable. The journal has an emphasis on publishing interdisciplinary work and bringing research fields together, encompassing experimental, theoretical and computational work.