估计高斯数据中最大线性同余区的标准

Pub Date : 2024-08-06 DOI:10.1016/j.jspi.2024.106223
Jean-Marc Bardet
{"title":"估计高斯数据中最大线性同余区的标准","authors":"Jean-Marc Bardet","doi":"10.1016/j.jspi.2024.106223","DOIUrl":null,"url":null,"abstract":"<div><p>A criterion is constructed to identify the largest homoscedastic region in a Gaussian dataset. This can be reduced to a one-sided non-parametric break detection, knowing that up to a certain index the output is governed by a linear homoscedastic model, while after this index it is different (<em>e.g.</em> a different model, different variables, different volatility, ….). We show the convergence of the estimator of this index, with asymptotic concentration inequalities that can be exponential. A criterion and convergence results are derived when the linear homoscedastic zone is bounded by two breaks on both sides. Additionally, a criterion for choosing between zero, one, or two breaks is proposed. Monte Carlo experiments will also confirm its very good numerical performance.</p></div>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-08-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A criterion for estimating the largest linear homoscedastic zone in Gaussian data\",\"authors\":\"Jean-Marc Bardet\",\"doi\":\"10.1016/j.jspi.2024.106223\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>A criterion is constructed to identify the largest homoscedastic region in a Gaussian dataset. This can be reduced to a one-sided non-parametric break detection, knowing that up to a certain index the output is governed by a linear homoscedastic model, while after this index it is different (<em>e.g.</em> a different model, different variables, different volatility, ….). We show the convergence of the estimator of this index, with asymptotic concentration inequalities that can be exponential. A criterion and convergence results are derived when the linear homoscedastic zone is bounded by two breaks on both sides. Additionally, a criterion for choosing between zero, one, or two breaks is proposed. Monte Carlo experiments will also confirm its very good numerical performance.</p></div>\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2024-08-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0378375824000806\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0378375824000806","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们构建了一个标准来识别高斯数据集中最大的同方差区域。这可以简化为单边非参数断裂检测,即在某一指数之前,输出由线性同方差模型控制,而在该指数之后,输出则不同(例如,不同的模型、不同的变量、不同的波动率,....)。我们展示了该指数估计值的收敛性,其渐近集中不等式可能是指数型的。当线性同余区两侧有两个断点时,我们将得出一个标准和收敛结果。此外,还提出了在零、一或两个断点之间进行选择的标准。蒙特卡罗实验也将证实其非常好的数值性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
A criterion for estimating the largest linear homoscedastic zone in Gaussian data

A criterion is constructed to identify the largest homoscedastic region in a Gaussian dataset. This can be reduced to a one-sided non-parametric break detection, knowing that up to a certain index the output is governed by a linear homoscedastic model, while after this index it is different (e.g. a different model, different variables, different volatility, ….). We show the convergence of the estimator of this index, with asymptotic concentration inequalities that can be exponential. A criterion and convergence results are derived when the linear homoscedastic zone is bounded by two breaks on both sides. Additionally, a criterion for choosing between zero, one, or two breaks is proposed. Monte Carlo experiments will also confirm its very good numerical performance.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1