G.S.M. Martins, T.S. Possamai, K.V. de Paiva, J.L.G. Oliveira
{"title":"评估板式热交换器中的瞬态热应力","authors":"G.S.M. Martins, T.S. Possamai, K.V. de Paiva, J.L.G. Oliveira","doi":"10.1016/j.ijpvp.2024.105296","DOIUrl":null,"url":null,"abstract":"<div><p>Thermal and mechanical stresses in stainless steel 316 L plates of gasketed plate heat exchangers (GPHEs) have been assessed with the aid of experiments. Stresses were indirectly determined with the aid of extensometers in critical plate areas. To the best of our knowledge, no experimental analysis of transient thermal loads on GPHE plates has been reported before. Experiments occurred with sudden and gradual heating processes with the aid of strain gauges. The former process implies that hot fluid enters the GPHE branch with the final target temperature, while the latter indicates that the hot fluid is progressively heated to the target temperature. Furthermore, combined mechanical and thermal stresses resulting from in-phase and out-of-phase loads are assessed in single and double operating conditions. Experiments were carried out with two plate thicknesses (0.5 and 0.7 mm). Stresses as obtained from experiments were compared to those provided by models containing simplified geometries and boundary conditions. Mechanical stresses promoted by the pressure difference between GPHE branches mostly affected the distribution area in single configuration. Thermal stresses at the porthole were higher than the ones found at the distribution zones, particularly for thicker plates. Besides, thermal stresses increased in double operation. Sudden heating processes with the system at rest promoted thermal peaking stress in a timescale of seconds, while the timescale to reach peak values by gradually heating the hot fluid is in the order of minutes. The most critical condition would be achieved at the porthole with in-phase loads and in double operation for the given settings.</p></div>","PeriodicalId":54946,"journal":{"name":"International Journal of Pressure Vessels and Piping","volume":"211 ","pages":"Article 105296"},"PeriodicalIF":3.0000,"publicationDate":"2024-08-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Assessment of transient thermal stresses in gasketed plate heat exchangers\",\"authors\":\"G.S.M. Martins, T.S. Possamai, K.V. de Paiva, J.L.G. Oliveira\",\"doi\":\"10.1016/j.ijpvp.2024.105296\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Thermal and mechanical stresses in stainless steel 316 L plates of gasketed plate heat exchangers (GPHEs) have been assessed with the aid of experiments. Stresses were indirectly determined with the aid of extensometers in critical plate areas. To the best of our knowledge, no experimental analysis of transient thermal loads on GPHE plates has been reported before. Experiments occurred with sudden and gradual heating processes with the aid of strain gauges. The former process implies that hot fluid enters the GPHE branch with the final target temperature, while the latter indicates that the hot fluid is progressively heated to the target temperature. Furthermore, combined mechanical and thermal stresses resulting from in-phase and out-of-phase loads are assessed in single and double operating conditions. Experiments were carried out with two plate thicknesses (0.5 and 0.7 mm). Stresses as obtained from experiments were compared to those provided by models containing simplified geometries and boundary conditions. Mechanical stresses promoted by the pressure difference between GPHE branches mostly affected the distribution area in single configuration. Thermal stresses at the porthole were higher than the ones found at the distribution zones, particularly for thicker plates. Besides, thermal stresses increased in double operation. Sudden heating processes with the system at rest promoted thermal peaking stress in a timescale of seconds, while the timescale to reach peak values by gradually heating the hot fluid is in the order of minutes. The most critical condition would be achieved at the porthole with in-phase loads and in double operation for the given settings.</p></div>\",\"PeriodicalId\":54946,\"journal\":{\"name\":\"International Journal of Pressure Vessels and Piping\",\"volume\":\"211 \",\"pages\":\"Article 105296\"},\"PeriodicalIF\":3.0000,\"publicationDate\":\"2024-08-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Pressure Vessels and Piping\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S030801612400173X\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, MECHANICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Pressure Vessels and Piping","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S030801612400173X","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
Assessment of transient thermal stresses in gasketed plate heat exchangers
Thermal and mechanical stresses in stainless steel 316 L plates of gasketed plate heat exchangers (GPHEs) have been assessed with the aid of experiments. Stresses were indirectly determined with the aid of extensometers in critical plate areas. To the best of our knowledge, no experimental analysis of transient thermal loads on GPHE plates has been reported before. Experiments occurred with sudden and gradual heating processes with the aid of strain gauges. The former process implies that hot fluid enters the GPHE branch with the final target temperature, while the latter indicates that the hot fluid is progressively heated to the target temperature. Furthermore, combined mechanical and thermal stresses resulting from in-phase and out-of-phase loads are assessed in single and double operating conditions. Experiments were carried out with two plate thicknesses (0.5 and 0.7 mm). Stresses as obtained from experiments were compared to those provided by models containing simplified geometries and boundary conditions. Mechanical stresses promoted by the pressure difference between GPHE branches mostly affected the distribution area in single configuration. Thermal stresses at the porthole were higher than the ones found at the distribution zones, particularly for thicker plates. Besides, thermal stresses increased in double operation. Sudden heating processes with the system at rest promoted thermal peaking stress in a timescale of seconds, while the timescale to reach peak values by gradually heating the hot fluid is in the order of minutes. The most critical condition would be achieved at the porthole with in-phase loads and in double operation for the given settings.
期刊介绍:
Pressure vessel engineering technology is of importance in many branches of industry. This journal publishes the latest research results and related information on all its associated aspects, with particular emphasis on the structural integrity assessment, maintenance and life extension of pressurised process engineering plants.
The anticipated coverage of the International Journal of Pressure Vessels and Piping ranges from simple mass-produced pressure vessels to large custom-built vessels and tanks. Pressure vessels technology is a developing field, and contributions on the following topics will therefore be welcome:
• Pressure vessel engineering
• Structural integrity assessment
• Design methods
• Codes and standards
• Fabrication and welding
• Materials properties requirements
• Inspection and quality management
• Maintenance and life extension
• Ageing and environmental effects
• Life management
Of particular importance are papers covering aspects of significant practical application which could lead to major improvements in economy, reliability and useful life. While most accepted papers represent the results of original applied research, critical reviews of topical interest by world-leading experts will also appear from time to time.
International Journal of Pressure Vessels and Piping is indispensable reading for engineering professionals involved in the energy, petrochemicals, process plant, transport, aerospace and related industries; for manufacturers of pressure vessels and ancillary equipment; and for academics pursuing research in these areas.