评估用于小规模树脂生产的间接太阳能干燥器:能源、放能、经济(3E)和可持续性分析

IF 7.1 2区 工程技术 Q1 ENERGY & FUELS Sustainable Energy Technologies and Assessments Pub Date : 2024-08-23 DOI:10.1016/j.seta.2024.103950
{"title":"评估用于小规模树脂生产的间接太阳能干燥器:能源、放能、经济(3E)和可持续性分析","authors":"","doi":"10.1016/j.seta.2024.103950","DOIUrl":null,"url":null,"abstract":"<div><p>This study evaluates an innovative domestic indirect solar dryer (ISD) for drying grapes (Vitis Vinifera L.), focusing on energy, exergy, economic, and sustainability performance. Two trials with crop loads of 15% (Trial-1) and 33% (Trial-2) were conducted. Trial-2 exhibited higher energy efficiencies in the solar collector (SC) and drying chamber (DC) compared to Trial-1, with efficiencies of 61.4% and 58.5% for SC, and a 13% increase in DC efficiency. The daily average exergy efficiencies for SC and DC ranged from 11%–13% and 54%–58%, respectively. Trial-2 also showed a 113% higher life cycle savings, a 54.4% decrease in payback period, and a 23% lower waste exergy ratio compared to Trial-1. Pre-treatment of grapes resulted in superior dried product quality. The study highlights the ISD’s potential as an economically and environmentally sustainable solution for small-scale agricultural ventures, providing insights for renewable energy sectors</p></div>","PeriodicalId":56019,"journal":{"name":"Sustainable Energy Technologies and Assessments","volume":null,"pages":null},"PeriodicalIF":7.1000,"publicationDate":"2024-08-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Assessment of an indirect solar dryer for small-scale resin production: Energy, exergy, economic (3E), and sustainability analysis\",\"authors\":\"\",\"doi\":\"10.1016/j.seta.2024.103950\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>This study evaluates an innovative domestic indirect solar dryer (ISD) for drying grapes (Vitis Vinifera L.), focusing on energy, exergy, economic, and sustainability performance. Two trials with crop loads of 15% (Trial-1) and 33% (Trial-2) were conducted. Trial-2 exhibited higher energy efficiencies in the solar collector (SC) and drying chamber (DC) compared to Trial-1, with efficiencies of 61.4% and 58.5% for SC, and a 13% increase in DC efficiency. The daily average exergy efficiencies for SC and DC ranged from 11%–13% and 54%–58%, respectively. Trial-2 also showed a 113% higher life cycle savings, a 54.4% decrease in payback period, and a 23% lower waste exergy ratio compared to Trial-1. Pre-treatment of grapes resulted in superior dried product quality. The study highlights the ISD’s potential as an economically and environmentally sustainable solution for small-scale agricultural ventures, providing insights for renewable energy sectors</p></div>\",\"PeriodicalId\":56019,\"journal\":{\"name\":\"Sustainable Energy Technologies and Assessments\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":7.1000,\"publicationDate\":\"2024-08-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Sustainable Energy Technologies and Assessments\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2213138824003461\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENERGY & FUELS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Sustainable Energy Technologies and Assessments","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2213138824003461","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

摘要

本研究评估了用于干燥葡萄(葡萄属)的创新型家用间接太阳能干燥器(ISD),重点关注能源、放能、经济和可持续性性能。进行了两次试验,作物负载分别为 15%(试验-1)和 33%(试验-2)。与试验-1 相比,试验-2 的太阳能集热器(SC)和干燥室(DC)的能效更高,SC 的能效分别为 61.4% 和 58.5%,DC 的能效提高了 13%。蒸发器和干燥室的日平均能效分别为 11%-13% 和 54%-58%。与试验-1 相比,试验-2 的生命周期节约率提高了 113%,投资回收期缩短了 54.4%,废物放电率降低了 23%。对葡萄进行预处理后,干品质量更优。这项研究强调了 ISD 作为小规模农业企业的经济和环境可持续解决方案的潜力,为可再生能源领域提供了启示。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Assessment of an indirect solar dryer for small-scale resin production: Energy, exergy, economic (3E), and sustainability analysis

This study evaluates an innovative domestic indirect solar dryer (ISD) for drying grapes (Vitis Vinifera L.), focusing on energy, exergy, economic, and sustainability performance. Two trials with crop loads of 15% (Trial-1) and 33% (Trial-2) were conducted. Trial-2 exhibited higher energy efficiencies in the solar collector (SC) and drying chamber (DC) compared to Trial-1, with efficiencies of 61.4% and 58.5% for SC, and a 13% increase in DC efficiency. The daily average exergy efficiencies for SC and DC ranged from 11%–13% and 54%–58%, respectively. Trial-2 also showed a 113% higher life cycle savings, a 54.4% decrease in payback period, and a 23% lower waste exergy ratio compared to Trial-1. Pre-treatment of grapes resulted in superior dried product quality. The study highlights the ISD’s potential as an economically and environmentally sustainable solution for small-scale agricultural ventures, providing insights for renewable energy sectors

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Sustainable Energy Technologies and Assessments
Sustainable Energy Technologies and Assessments Energy-Renewable Energy, Sustainability and the Environment
CiteScore
12.70
自引率
12.50%
发文量
1091
期刊介绍: Encouraging a transition to a sustainable energy future is imperative for our world. Technologies that enable this shift in various sectors like transportation, heating, and power systems are of utmost importance. Sustainable Energy Technologies and Assessments welcomes papers focusing on a range of aspects and levels of technological advancements in energy generation and utilization. The aim is to reduce the negative environmental impact associated with energy production and consumption, spanning from laboratory experiments to real-world applications in the commercial sector.
期刊最新文献
Long-term influence of the gradual naval fleets decarbonization on the flexibility of an integrated energy system Sustainable approach to cigarette butts management: From waste to new building material component Utilization of hydro sources in Canada for green hydrogen fuel production Development and selection of lignocellulose biomass and nano-additive combination for co-pyrolysis operation in power generation using hybrid prediction and Machine learning model – A k-means cluster approach Evaluating the geographical, technical and economic potential of wind and solar power in China: A critical review at different scales
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1