{"title":"通过对伊拉克北部和西部泥盆纪-早石炭世奥拉地层的古生物学有机岩石学调查,了解其烃源岩的沉积环境和热成熟度","authors":"","doi":"10.1016/j.jafrearsci.2024.105400","DOIUrl":null,"url":null,"abstract":"<div><p>The study investigates the palynofacies, organic matter character, and hydrocarbon generation potential of this rock unit, based on surface and subsurface samples from the Ora Formation type-section in extreme northern Iraq and the Akkas-3 well in western Iraq, respectively. Dark, mostly oxidized, gelified platy amorphous organic matter (AOM) dominates the palynological components in the surface section, in addition to a few rounded spores and structured phytoclasts. In contrast, palynomorphs, including <em>Ambitisporites avitus</em>, <em>Aneurospora</em> spp., <em>Vallatisporites verrucosus</em>, <em>Acinosporites</em> spp., <em>Verrucosisporites nitidus</em> and the algae <em>Botryococcus,</em> are predominant in studied samples from the Akkas-3 well. Statistical cluster analysis identified three palynofacies types in the surface section based on stratigraphic variations in the particulate organic matter. These vary from high amorphous organic matter (AOM), moderate phytoclast, and low palynomorph abundances that represent proximal suboxic–anoxic shelfal environments to moderate to good AOM and low to moderate palynomorph abundances that represent distal suboxic–anoxic or distal dysoxic–anoxic shelfal environments. The organic petrographic study of the outcrop section also revealed the strong effect of oxidation, where dispersed terrigenous and amorphous organic materials in the form of granular and gelified forms dominate and reflect a terrestrial origin of these components. In the subsurface section, a mixed terrestrial and less marine or lacustrine origin characterized the studied organic matter, where land plant spores (sporinite), in addition to vitrinite and inertinite, are dominant with a few scattered liptinite macerals. The difference in thermal maturity between the outcrop and subsurface samples is likely due to the higher tectonic burial of the outcrop samples that form part of the Northern Thrust Zone of Iraq. Nevertheless, higher abundances of AOM (oil-prone kerogen type II) accumulated in the northern outcrop type section. This might imply that the Ora Formation has a higher potential for hydrocarbon production north of the Akkas field.</p></div>","PeriodicalId":14874,"journal":{"name":"Journal of African Earth Sciences","volume":null,"pages":null},"PeriodicalIF":2.2000,"publicationDate":"2024-08-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Depositional environments and thermal maturity of the hydrocarbon source rocks in the Devonian–Early carboniferous Ora Formation from palynological organic petrographic investigations in northern and western Iraq\",\"authors\":\"\",\"doi\":\"10.1016/j.jafrearsci.2024.105400\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The study investigates the palynofacies, organic matter character, and hydrocarbon generation potential of this rock unit, based on surface and subsurface samples from the Ora Formation type-section in extreme northern Iraq and the Akkas-3 well in western Iraq, respectively. Dark, mostly oxidized, gelified platy amorphous organic matter (AOM) dominates the palynological components in the surface section, in addition to a few rounded spores and structured phytoclasts. In contrast, palynomorphs, including <em>Ambitisporites avitus</em>, <em>Aneurospora</em> spp., <em>Vallatisporites verrucosus</em>, <em>Acinosporites</em> spp., <em>Verrucosisporites nitidus</em> and the algae <em>Botryococcus,</em> are predominant in studied samples from the Akkas-3 well. Statistical cluster analysis identified three palynofacies types in the surface section based on stratigraphic variations in the particulate organic matter. These vary from high amorphous organic matter (AOM), moderate phytoclast, and low palynomorph abundances that represent proximal suboxic–anoxic shelfal environments to moderate to good AOM and low to moderate palynomorph abundances that represent distal suboxic–anoxic or distal dysoxic–anoxic shelfal environments. The organic petrographic study of the outcrop section also revealed the strong effect of oxidation, where dispersed terrigenous and amorphous organic materials in the form of granular and gelified forms dominate and reflect a terrestrial origin of these components. In the subsurface section, a mixed terrestrial and less marine or lacustrine origin characterized the studied organic matter, where land plant spores (sporinite), in addition to vitrinite and inertinite, are dominant with a few scattered liptinite macerals. The difference in thermal maturity between the outcrop and subsurface samples is likely due to the higher tectonic burial of the outcrop samples that form part of the Northern Thrust Zone of Iraq. Nevertheless, higher abundances of AOM (oil-prone kerogen type II) accumulated in the northern outcrop type section. This might imply that the Ora Formation has a higher potential for hydrocarbon production north of the Akkas field.</p></div>\",\"PeriodicalId\":14874,\"journal\":{\"name\":\"Journal of African Earth Sciences\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2024-08-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of African Earth Sciences\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1464343X24002334\",\"RegionNum\":4,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"GEOSCIENCES, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of African Earth Sciences","FirstCategoryId":"89","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1464343X24002334","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"GEOSCIENCES, MULTIDISCIPLINARY","Score":null,"Total":0}
Depositional environments and thermal maturity of the hydrocarbon source rocks in the Devonian–Early carboniferous Ora Formation from palynological organic petrographic investigations in northern and western Iraq
The study investigates the palynofacies, organic matter character, and hydrocarbon generation potential of this rock unit, based on surface and subsurface samples from the Ora Formation type-section in extreme northern Iraq and the Akkas-3 well in western Iraq, respectively. Dark, mostly oxidized, gelified platy amorphous organic matter (AOM) dominates the palynological components in the surface section, in addition to a few rounded spores and structured phytoclasts. In contrast, palynomorphs, including Ambitisporites avitus, Aneurospora spp., Vallatisporites verrucosus, Acinosporites spp., Verrucosisporites nitidus and the algae Botryococcus, are predominant in studied samples from the Akkas-3 well. Statistical cluster analysis identified three palynofacies types in the surface section based on stratigraphic variations in the particulate organic matter. These vary from high amorphous organic matter (AOM), moderate phytoclast, and low palynomorph abundances that represent proximal suboxic–anoxic shelfal environments to moderate to good AOM and low to moderate palynomorph abundances that represent distal suboxic–anoxic or distal dysoxic–anoxic shelfal environments. The organic petrographic study of the outcrop section also revealed the strong effect of oxidation, where dispersed terrigenous and amorphous organic materials in the form of granular and gelified forms dominate and reflect a terrestrial origin of these components. In the subsurface section, a mixed terrestrial and less marine or lacustrine origin characterized the studied organic matter, where land plant spores (sporinite), in addition to vitrinite and inertinite, are dominant with a few scattered liptinite macerals. The difference in thermal maturity between the outcrop and subsurface samples is likely due to the higher tectonic burial of the outcrop samples that form part of the Northern Thrust Zone of Iraq. Nevertheless, higher abundances of AOM (oil-prone kerogen type II) accumulated in the northern outcrop type section. This might imply that the Ora Formation has a higher potential for hydrocarbon production north of the Akkas field.
期刊介绍:
The Journal of African Earth Sciences sees itself as the prime geological journal for all aspects of the Earth Sciences about the African plate. Papers dealing with peripheral areas are welcome if they demonstrate a tight link with Africa.
The Journal publishes high quality, peer-reviewed scientific papers. It is devoted primarily to research papers but short communications relating to new developments of broad interest, reviews and book reviews will also be considered. Papers must have international appeal and should present work of more regional than local significance and dealing with well identified and justified scientific questions. Specialised technical papers, analytical or exploration reports must be avoided. Papers on applied geology should preferably be linked to such core disciplines and must be addressed to a more general geoscientific audience.