为动态 RIS 辅助无线广播通信系统最小化无 CSI 的误码率

IF 4.4 2区 计算机科学 Q1 COMPUTER SCIENCE, HARDWARE & ARCHITECTURE Computer Networks Pub Date : 2024-08-22 DOI:10.1016/j.comnet.2024.110729
{"title":"为动态 RIS 辅助无线广播通信系统最小化无 CSI 的误码率","authors":"","doi":"10.1016/j.comnet.2024.110729","DOIUrl":null,"url":null,"abstract":"<div><p>This paper studies a dynamic reconfigurable intelligent surface (RIS)-assisted broadcast communication system where a transmitter broadcasts information to multiple receivers with time-varying locations via a RIS. The goal is to minimize the maximum bit error rate (BER) at the receivers by optimizing RIS phase shifts, subject to a given discrete phase shift constraint. Unlike most existing works where channel state information (CSI) is required, only location information of the receivers is needed in our work, due to the great challenge of instantaneous CSI estimation in RIS-assisted communications and the reason that statistical CSI does not apply to the dynamic scenario. The involved optimization problem is hard to tackle, because the BERs at the receivers cannot be calculated by classical CSI-dependent analytical expressions for lack of CSI and exhaustive searching is computationally prohibitive to achieve the optimal discrete phase shifts. To address this issue, a deep reinforcement learning (DRL) approach is proposed to solve the problem by reformulating the optimization problem as a Markov decision process (MDP), where the BERs are measured by the Monte Carlo method. Furthermore, to tackle the issue of the high-dimensional action space in the MDP, a novel action-composition based proximal policy optimization (PPO) algorithm is proposed to solve the MDP. Simulation results verify the effectiveness of the proposed PPO-based DRL approach.</p></div>","PeriodicalId":50637,"journal":{"name":"Computer Networks","volume":null,"pages":null},"PeriodicalIF":4.4000,"publicationDate":"2024-08-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Minimize BER without CSI for dynamic RIS-assisted wireless broadcast communication systems\",\"authors\":\"\",\"doi\":\"10.1016/j.comnet.2024.110729\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>This paper studies a dynamic reconfigurable intelligent surface (RIS)-assisted broadcast communication system where a transmitter broadcasts information to multiple receivers with time-varying locations via a RIS. The goal is to minimize the maximum bit error rate (BER) at the receivers by optimizing RIS phase shifts, subject to a given discrete phase shift constraint. Unlike most existing works where channel state information (CSI) is required, only location information of the receivers is needed in our work, due to the great challenge of instantaneous CSI estimation in RIS-assisted communications and the reason that statistical CSI does not apply to the dynamic scenario. The involved optimization problem is hard to tackle, because the BERs at the receivers cannot be calculated by classical CSI-dependent analytical expressions for lack of CSI and exhaustive searching is computationally prohibitive to achieve the optimal discrete phase shifts. To address this issue, a deep reinforcement learning (DRL) approach is proposed to solve the problem by reformulating the optimization problem as a Markov decision process (MDP), where the BERs are measured by the Monte Carlo method. Furthermore, to tackle the issue of the high-dimensional action space in the MDP, a novel action-composition based proximal policy optimization (PPO) algorithm is proposed to solve the MDP. Simulation results verify the effectiveness of the proposed PPO-based DRL approach.</p></div>\",\"PeriodicalId\":50637,\"journal\":{\"name\":\"Computer Networks\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.4000,\"publicationDate\":\"2024-08-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computer Networks\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1389128624005619\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computer Networks","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1389128624005619","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE","Score":null,"Total":0}
引用次数: 0

摘要

本文研究了一种动态可重构智能表面(RIS)辅助广播通信系统,在该系统中,发射机通过 RIS 向多个位置随时间变化的接收机广播信息。其目标是在给定离散相移约束条件下,通过优化 RIS 相移,使接收器的最大误码率(BER)最小化。与大多数需要信道状态信息(CSI)的现有研究不同,我们的研究只需要接收器的位置信息,这是因为在 RIS 辅助通信中,瞬时 CSI 估计面临巨大挑战,而且统计 CSI 并不适用于动态场景。由于缺乏 CSI,接收器上的误码率无法通过依赖 CSI 的经典分析表达式计算出来,而且要实现最佳离散相移,穷举搜索在计算上是非常困难的,因此所涉及的优化问题很难解决。为了解决这个问题,我们提出了一种深度强化学习(DRL)方法,通过将优化问题重新表述为马尔可夫决策过程(MDP)来解决这个问题,其中误码率是通过蒙特卡罗方法测量的。此外,为了解决 MDP 中的高维行动空间问题,还提出了一种基于行动组合的新型近端策略优化(PPO)算法来解决 MDP。仿真结果验证了所提出的基于 PPO 的 DRL 方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Minimize BER without CSI for dynamic RIS-assisted wireless broadcast communication systems

This paper studies a dynamic reconfigurable intelligent surface (RIS)-assisted broadcast communication system where a transmitter broadcasts information to multiple receivers with time-varying locations via a RIS. The goal is to minimize the maximum bit error rate (BER) at the receivers by optimizing RIS phase shifts, subject to a given discrete phase shift constraint. Unlike most existing works where channel state information (CSI) is required, only location information of the receivers is needed in our work, due to the great challenge of instantaneous CSI estimation in RIS-assisted communications and the reason that statistical CSI does not apply to the dynamic scenario. The involved optimization problem is hard to tackle, because the BERs at the receivers cannot be calculated by classical CSI-dependent analytical expressions for lack of CSI and exhaustive searching is computationally prohibitive to achieve the optimal discrete phase shifts. To address this issue, a deep reinforcement learning (DRL) approach is proposed to solve the problem by reformulating the optimization problem as a Markov decision process (MDP), where the BERs are measured by the Monte Carlo method. Furthermore, to tackle the issue of the high-dimensional action space in the MDP, a novel action-composition based proximal policy optimization (PPO) algorithm is proposed to solve the MDP. Simulation results verify the effectiveness of the proposed PPO-based DRL approach.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Computer Networks
Computer Networks 工程技术-电信学
CiteScore
10.80
自引率
3.60%
发文量
434
审稿时长
8.6 months
期刊介绍: Computer Networks is an international, archival journal providing a publication vehicle for complete coverage of all topics of interest to those involved in the computer communications networking area. The audience includes researchers, managers and operators of networks as well as designers and implementors. The Editorial Board will consider any material for publication that is of interest to those groups.
期刊最新文献
SD-MDN-TM: A traceback and mitigation integrated mechanism against DDoS attacks with IP spoofing On the aggregation of FIBs at ICN routers using routing strategy Protecting unauthenticated messages in LTE/5G mobile networks: A two-level Hierarchical Identity-Based Signature (HIBS) solution A two-step linear programming approach for repeater placement in large-scale quantum networks Network traffic prediction based on PSO-LightGBM-TM
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1