{"title":"基于 Fe2AlB2 MAX 相过氧化物酶模拟性能的双荧光比色传感平台,用于定量分析啶虫脒和吡虫啉农药","authors":"","doi":"10.1016/j.jphotochem.2024.115979","DOIUrl":null,"url":null,"abstract":"<div><p>The extensive use of pesticides in modern agriculture has raised concerns about environmental contamination and adverse human health effects. Therefore, developing highly sensitive detection methods to identify pesticide residues is crucial for food safety and ecosystem protection. In this study, the Fe<sub>2</sub>AlB<sub>2</sub> MAX phase was synthesized and characterized. After evaluating its peroxidase-mimetic performance using a colorimetric method, a new, sensitive, and simple dual fluorescence-colorimetric sensor was developed for the quantification of two common pesticides, acetamiprid (ACP) and imidacloprid (IMP), using fluorescein (FL). The developed method is based on the inhibitory impact of ACP and IMP on the enzymatic performance of the Fe<sub>2</sub>AlB<sub>2</sub> MAX phase, specifically the inhibition of hydroxyl radical (<sup><img></sup>OH) generation, which enhances the absorption and emission intensities of FL. The results confirmed that <sup><img></sup>OH generated through the breakdown of H<sub>2</sub>O<sub>2</sub> via the catalytic activity of the MAX phase can decrease the intrinsic absorption and emission intensities of FL. However, ACP and IMP inhibit the peroxidase-like activity of the MAX phase, leading to increased absorption and emission intensities of FL. The limit of detection values calculated for spectrophotometric and spectrofluorimetric quantifications were 2.8 μM and 0.051 μM for ACP and 1.72 μM and 0.013 μM for IMP, respectively. Furthermore, the proposed method was successfully utilized to accurately and reliably determine ACP and IMP in spiked real samples with satisfactory accuracy and precision. These developed methods offer several advantages, making them promising candidates for the direct, rapid screening of pesticide residues.</p></div>","PeriodicalId":16782,"journal":{"name":"Journal of Photochemistry and Photobiology A-chemistry","volume":null,"pages":null},"PeriodicalIF":4.1000,"publicationDate":"2024-08-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1010603024005239/pdfft?md5=7a4b229224767d3c500c29eca1b5f0a0&pid=1-s2.0-S1010603024005239-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Dual fluorescence-colorimetric sensing platform based on the peroxidase-mimetic performance of the Fe2AlB2 MAX phase for the quantification of acetamiprid and imidacloprid pesticides\",\"authors\":\"\",\"doi\":\"10.1016/j.jphotochem.2024.115979\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The extensive use of pesticides in modern agriculture has raised concerns about environmental contamination and adverse human health effects. Therefore, developing highly sensitive detection methods to identify pesticide residues is crucial for food safety and ecosystem protection. In this study, the Fe<sub>2</sub>AlB<sub>2</sub> MAX phase was synthesized and characterized. After evaluating its peroxidase-mimetic performance using a colorimetric method, a new, sensitive, and simple dual fluorescence-colorimetric sensor was developed for the quantification of two common pesticides, acetamiprid (ACP) and imidacloprid (IMP), using fluorescein (FL). The developed method is based on the inhibitory impact of ACP and IMP on the enzymatic performance of the Fe<sub>2</sub>AlB<sub>2</sub> MAX phase, specifically the inhibition of hydroxyl radical (<sup><img></sup>OH) generation, which enhances the absorption and emission intensities of FL. The results confirmed that <sup><img></sup>OH generated through the breakdown of H<sub>2</sub>O<sub>2</sub> via the catalytic activity of the MAX phase can decrease the intrinsic absorption and emission intensities of FL. However, ACP and IMP inhibit the peroxidase-like activity of the MAX phase, leading to increased absorption and emission intensities of FL. The limit of detection values calculated for spectrophotometric and spectrofluorimetric quantifications were 2.8 μM and 0.051 μM for ACP and 1.72 μM and 0.013 μM for IMP, respectively. Furthermore, the proposed method was successfully utilized to accurately and reliably determine ACP and IMP in spiked real samples with satisfactory accuracy and precision. These developed methods offer several advantages, making them promising candidates for the direct, rapid screening of pesticide residues.</p></div>\",\"PeriodicalId\":16782,\"journal\":{\"name\":\"Journal of Photochemistry and Photobiology A-chemistry\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.1000,\"publicationDate\":\"2024-08-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S1010603024005239/pdfft?md5=7a4b229224767d3c500c29eca1b5f0a0&pid=1-s2.0-S1010603024005239-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Photochemistry and Photobiology A-chemistry\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1010603024005239\",\"RegionNum\":3,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Photochemistry and Photobiology A-chemistry","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1010603024005239","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
Dual fluorescence-colorimetric sensing platform based on the peroxidase-mimetic performance of the Fe2AlB2 MAX phase for the quantification of acetamiprid and imidacloprid pesticides
The extensive use of pesticides in modern agriculture has raised concerns about environmental contamination and adverse human health effects. Therefore, developing highly sensitive detection methods to identify pesticide residues is crucial for food safety and ecosystem protection. In this study, the Fe2AlB2 MAX phase was synthesized and characterized. After evaluating its peroxidase-mimetic performance using a colorimetric method, a new, sensitive, and simple dual fluorescence-colorimetric sensor was developed for the quantification of two common pesticides, acetamiprid (ACP) and imidacloprid (IMP), using fluorescein (FL). The developed method is based on the inhibitory impact of ACP and IMP on the enzymatic performance of the Fe2AlB2 MAX phase, specifically the inhibition of hydroxyl radical (OH) generation, which enhances the absorption and emission intensities of FL. The results confirmed that OH generated through the breakdown of H2O2 via the catalytic activity of the MAX phase can decrease the intrinsic absorption and emission intensities of FL. However, ACP and IMP inhibit the peroxidase-like activity of the MAX phase, leading to increased absorption and emission intensities of FL. The limit of detection values calculated for spectrophotometric and spectrofluorimetric quantifications were 2.8 μM and 0.051 μM for ACP and 1.72 μM and 0.013 μM for IMP, respectively. Furthermore, the proposed method was successfully utilized to accurately and reliably determine ACP and IMP in spiked real samples with satisfactory accuracy and precision. These developed methods offer several advantages, making them promising candidates for the direct, rapid screening of pesticide residues.
期刊介绍:
JPPA publishes the results of fundamental studies on all aspects of chemical phenomena induced by interactions between light and molecules/matter of all kinds.
All systems capable of being described at the molecular or integrated multimolecular level are appropriate for the journal. This includes all molecular chemical species as well as biomolecular, supramolecular, polymer and other macromolecular systems, as well as solid state photochemistry. In addition, the journal publishes studies of semiconductor and other photoactive organic and inorganic materials, photocatalysis (organic, inorganic, supramolecular and superconductor).
The scope includes condensed and gas phase photochemistry, as well as synchrotron radiation chemistry. A broad range of processes and techniques in photochemistry are covered such as light induced energy, electron and proton transfer; nonlinear photochemical behavior; mechanistic investigation of photochemical reactions and identification of the products of photochemical reactions; quantum yield determinations and measurements of rate constants for primary and secondary photochemical processes; steady-state and time-resolved emission, ultrafast spectroscopic methods, single molecule spectroscopy, time resolved X-ray diffraction, luminescence microscopy, and scattering spectroscopy applied to photochemistry. Papers in emerging and applied areas such as luminescent sensors, electroluminescence, solar energy conversion, atmospheric photochemistry, environmental remediation, and related photocatalytic chemistry are also welcome.