富镍单晶层状氧化物阴极的表面工程技术实现了高容量、长循环寿命的硫化物全固态电池

Xuebao Li , Jiasen Wang , Cheng Han , Kun Zeng , Zhuangzhi Wu , Dezhi Wang
{"title":"富镍单晶层状氧化物阴极的表面工程技术实现了高容量、长循环寿命的硫化物全固态电池","authors":"Xuebao Li ,&nbsp;Jiasen Wang ,&nbsp;Cheng Han ,&nbsp;Kun Zeng ,&nbsp;Zhuangzhi Wu ,&nbsp;Dezhi Wang","doi":"10.1016/j.apmate.2024.100228","DOIUrl":null,"url":null,"abstract":"<div><p>Sulfide all-solid-state lithium batteries (SASSLBs) with a single-crystal nickel-rich layered oxide cathode (LiNi<sub><em>x</em></sub>Co<sub><em>y</em></sub>Mn<sub>1-<em>x</em>-<em>y</em></sub>O<sub>2</sub>, <em>x</em> ​≥ ​0.8) are highly desirable for advanced power batteries owing to their excellent energy density and safety. Nevertheless, the cathode material's cracking issue and its severe interfacial problem with sulfide solid electrolytes have hindered the further development. This study proposes to employ surface modification engineering to produce B-NCM cathode materials coated with boride nanostructure stabilizer in situ by utilizing NCM encapsulated with residual lithium. This approach enhances the electrochemical performance of SASSLBs by effectively inhibiting electrochemical-mechanical degradation of the NCM cathode material on cycling and reducing deleterious side reactions with the solid sulfide electrolyte. The B-NCM/LPSCl/Gr SASSLBs demonstrate impressive cycling stability, retaining 84.19 ​% of its capacity after 500 cycles at 0.2 ​C, which represents a 30.13 ​% increase vs. NCM/LPSCl/Gr. It also exhibits a specific capacity of 170.4 mAh/g during its first discharge at 0.1 ​C. This work demonstrates an effective surface engineering strategy for enhancing capacity and cycle life, providing valuable insights into solving interfacial problems in SASSLBs.</p></div>","PeriodicalId":7283,"journal":{"name":"Advanced Powder Materials","volume":"3 5","pages":"Article 100228"},"PeriodicalIF":0.0000,"publicationDate":"2024-08-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2772834X24000599/pdfft?md5=d3b60979e51850a599f1440f00d030e5&pid=1-s2.0-S2772834X24000599-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Surface engineering of nickel-rich single-crystal layered oxide cathode enables high-capacity and long cycle-life sulfide all-solid-state batteries\",\"authors\":\"Xuebao Li ,&nbsp;Jiasen Wang ,&nbsp;Cheng Han ,&nbsp;Kun Zeng ,&nbsp;Zhuangzhi Wu ,&nbsp;Dezhi Wang\",\"doi\":\"10.1016/j.apmate.2024.100228\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Sulfide all-solid-state lithium batteries (SASSLBs) with a single-crystal nickel-rich layered oxide cathode (LiNi<sub><em>x</em></sub>Co<sub><em>y</em></sub>Mn<sub>1-<em>x</em>-<em>y</em></sub>O<sub>2</sub>, <em>x</em> ​≥ ​0.8) are highly desirable for advanced power batteries owing to their excellent energy density and safety. Nevertheless, the cathode material's cracking issue and its severe interfacial problem with sulfide solid electrolytes have hindered the further development. This study proposes to employ surface modification engineering to produce B-NCM cathode materials coated with boride nanostructure stabilizer in situ by utilizing NCM encapsulated with residual lithium. This approach enhances the electrochemical performance of SASSLBs by effectively inhibiting electrochemical-mechanical degradation of the NCM cathode material on cycling and reducing deleterious side reactions with the solid sulfide electrolyte. The B-NCM/LPSCl/Gr SASSLBs demonstrate impressive cycling stability, retaining 84.19 ​% of its capacity after 500 cycles at 0.2 ​C, which represents a 30.13 ​% increase vs. NCM/LPSCl/Gr. It also exhibits a specific capacity of 170.4 mAh/g during its first discharge at 0.1 ​C. This work demonstrates an effective surface engineering strategy for enhancing capacity and cycle life, providing valuable insights into solving interfacial problems in SASSLBs.</p></div>\",\"PeriodicalId\":7283,\"journal\":{\"name\":\"Advanced Powder Materials\",\"volume\":\"3 5\",\"pages\":\"Article 100228\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-08-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2772834X24000599/pdfft?md5=d3b60979e51850a599f1440f00d030e5&pid=1-s2.0-S2772834X24000599-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advanced Powder Materials\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2772834X24000599\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Powder Materials","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2772834X24000599","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

采用单晶富镍层状氧化物正极(LiNixCoyMn1-x-yO2,x ≥ 0.8)的硫化物全固态锂电池(SASSLBs)具有出色的能量密度和安全性,是先进动力电池的理想选择。然而,阴极材料的开裂问题及其与硫化物固体电解质的严重界面问题阻碍了其进一步发展。本研究提出采用表面改性工程技术,利用残留锂包裹的 NCM,在原位生产涂有硼化物纳米结构稳定剂的 B-NCM 正极材料。这种方法可有效抑制 NCM 阴极材料在循环过程中的电化学-机械降解,并减少与固体硫化物电解质的有害副反应,从而提高 SASSLB 的电化学性能。B-NCM/LPSCl/Gr SASSLBs 的循环稳定性令人印象深刻,在 0.2 C 下循环 500 次后,其容量保持率为 84.19%,与 NCM/LPSCl/Gr 相比提高了 30.13%。这项工作展示了一种提高容量和循环寿命的有效表面工程策略,为解决 SASSLB 的界面问题提供了宝贵的见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Surface engineering of nickel-rich single-crystal layered oxide cathode enables high-capacity and long cycle-life sulfide all-solid-state batteries

Sulfide all-solid-state lithium batteries (SASSLBs) with a single-crystal nickel-rich layered oxide cathode (LiNixCoyMn1-x-yO2, x ​≥ ​0.8) are highly desirable for advanced power batteries owing to their excellent energy density and safety. Nevertheless, the cathode material's cracking issue and its severe interfacial problem with sulfide solid electrolytes have hindered the further development. This study proposes to employ surface modification engineering to produce B-NCM cathode materials coated with boride nanostructure stabilizer in situ by utilizing NCM encapsulated with residual lithium. This approach enhances the electrochemical performance of SASSLBs by effectively inhibiting electrochemical-mechanical degradation of the NCM cathode material on cycling and reducing deleterious side reactions with the solid sulfide electrolyte. The B-NCM/LPSCl/Gr SASSLBs demonstrate impressive cycling stability, retaining 84.19 ​% of its capacity after 500 cycles at 0.2 ​C, which represents a 30.13 ​% increase vs. NCM/LPSCl/Gr. It also exhibits a specific capacity of 170.4 mAh/g during its first discharge at 0.1 ​C. This work demonstrates an effective surface engineering strategy for enhancing capacity and cycle life, providing valuable insights into solving interfacial problems in SASSLBs.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
33.30
自引率
0.00%
发文量
0
期刊最新文献
Heteroatom doping in 2D MXenes for energy storage/conversion applications Advances in electrocatalytic urea synthesis: From fundamentals to applications Atomically dispersed NiOx cluster on high-index Pt facets boost ethanol electrooxidation through long-range synergistic sites Green and regulable synthesis of CdNCN on CdS semiconductor: Atomic-level heterostructures for enhanced photocatalytic hydrogen evolution Atmosphere engineering of metal-free Te/C3N4 p-n heterojunction for nearly 100% photocatalytic converting CO2 to CO
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1