基于还原氧化石墨烯的超灵敏电阻式传感器用于检测 CA125

IF 10.61 Q3 Biochemistry, Genetics and Molecular Biology Biosensors and Bioelectronics: X Pub Date : 2024-08-22 DOI:10.1016/j.biosx.2024.100530
Bolivia Konthoujam , Nikita Bhandari , Miriyala Pranay Kamal , P. Nitin Srinivas , Bhanoday Thati , Pranav Bondugula , Purushotham Reddy , Ramalingappa C. Antaratani , Naveen Kadayinti , Sudhanshu Shukla , Ruma Ghosh
{"title":"基于还原氧化石墨烯的超灵敏电阻式传感器用于检测 CA125","authors":"Bolivia Konthoujam ,&nbsp;Nikita Bhandari ,&nbsp;Miriyala Pranay Kamal ,&nbsp;P. Nitin Srinivas ,&nbsp;Bhanoday Thati ,&nbsp;Pranav Bondugula ,&nbsp;Purushotham Reddy ,&nbsp;Ramalingappa C. Antaratani ,&nbsp;Naveen Kadayinti ,&nbsp;Sudhanshu Shukla ,&nbsp;Ruma Ghosh","doi":"10.1016/j.biosx.2024.100530","DOIUrl":null,"url":null,"abstract":"<div><p>Early-stage detection of any cancer significantly improves the survival rates by enabling clinicians to design simpler and more effective treatment options, leading to a cure or remission. Early diagnosis of ovarian cancer, the leading cause of gynaecological cancer related mortalities, relies heavily on accurate detection of the serum biomarker CA125. This work presents a simple rGO/monoclonal antibody (mAB)/bovine serum albumin (BSA) based 2-port resistive sensor for CA125. The binding of mAB on rGO was confirmed by atomic force microscopy which showed increase in thickness of the device from 1.4 nm to approximately 40–60 nm after the mAB anchored on the device. FESEM further confirmed the morphologies of rGO, rGO/mAB, and rGO/mAB/CA125. The sensor exhibited impressive response ranging from 1.28% to 113.4% for 1 pg/mL to 300 ng/mL CA125. Notably, the rGO/mAB/BSA sensor displayed high selectivity towards CA125 and a readout circuit was designed, assembled, and tested with the sensors to get a portable device for detecting CA125. The developed sensors were tested with 9 clinical samples and were found to be determining the CA125 concentration accurately.</p></div>","PeriodicalId":260,"journal":{"name":"Biosensors and Bioelectronics: X","volume":"20 ","pages":"Article 100530"},"PeriodicalIF":10.6100,"publicationDate":"2024-08-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2590137024000943/pdfft?md5=f54c47c1763ed32e9d8b79a9cf6128c0&pid=1-s2.0-S2590137024000943-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Reduced graphene oxide based ultrasensitive resistive sensor for detection of CA125\",\"authors\":\"Bolivia Konthoujam ,&nbsp;Nikita Bhandari ,&nbsp;Miriyala Pranay Kamal ,&nbsp;P. Nitin Srinivas ,&nbsp;Bhanoday Thati ,&nbsp;Pranav Bondugula ,&nbsp;Purushotham Reddy ,&nbsp;Ramalingappa C. Antaratani ,&nbsp;Naveen Kadayinti ,&nbsp;Sudhanshu Shukla ,&nbsp;Ruma Ghosh\",\"doi\":\"10.1016/j.biosx.2024.100530\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Early-stage detection of any cancer significantly improves the survival rates by enabling clinicians to design simpler and more effective treatment options, leading to a cure or remission. Early diagnosis of ovarian cancer, the leading cause of gynaecological cancer related mortalities, relies heavily on accurate detection of the serum biomarker CA125. This work presents a simple rGO/monoclonal antibody (mAB)/bovine serum albumin (BSA) based 2-port resistive sensor for CA125. The binding of mAB on rGO was confirmed by atomic force microscopy which showed increase in thickness of the device from 1.4 nm to approximately 40–60 nm after the mAB anchored on the device. FESEM further confirmed the morphologies of rGO, rGO/mAB, and rGO/mAB/CA125. The sensor exhibited impressive response ranging from 1.28% to 113.4% for 1 pg/mL to 300 ng/mL CA125. Notably, the rGO/mAB/BSA sensor displayed high selectivity towards CA125 and a readout circuit was designed, assembled, and tested with the sensors to get a portable device for detecting CA125. The developed sensors were tested with 9 clinical samples and were found to be determining the CA125 concentration accurately.</p></div>\",\"PeriodicalId\":260,\"journal\":{\"name\":\"Biosensors and Bioelectronics: X\",\"volume\":\"20 \",\"pages\":\"Article 100530\"},\"PeriodicalIF\":10.6100,\"publicationDate\":\"2024-08-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2590137024000943/pdfft?md5=f54c47c1763ed32e9d8b79a9cf6128c0&pid=1-s2.0-S2590137024000943-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biosensors and Bioelectronics: X\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2590137024000943\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Biochemistry, Genetics and Molecular Biology\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biosensors and Bioelectronics: X","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2590137024000943","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Biochemistry, Genetics and Molecular Biology","Score":null,"Total":0}
引用次数: 0

摘要

任何癌症的早期检测都能使临床医生设计出更简单、更有效的治疗方案,从而达到治愈或缓解的目的,从而大大提高生存率。卵巢癌是妇科癌症相关死亡的主要原因,其早期诊断在很大程度上依赖于对血清生物标志物 CA125 的准确检测。本研究提出了一种简单的基于 rGO/单克隆抗体(mAB)/牛血清白蛋白(BSA)的 CA125 双端口电阻式传感器。原子力显微镜证实了 mAB 与 rGO 的结合,并显示 mAB 固定在装置上后,装置的厚度从 1.4 纳米增加到约 40-60 纳米。原子力显微镜进一步证实了 rGO、rGO/mAB 和 rGO/mAB/CA125 的形态。对于 1 pg/mL 至 300 ng/mL 的 CA125,传感器表现出 1.28% 至 113.4% 的显著响应。值得注意的是,rGO/mAB/BSA 传感器对 CA125 具有高选择性,而且还设计、组装了读出电路,并与传感器一起进行了测试,从而获得了检测 CA125 的便携式设备。用 9 份临床样本对所开发的传感器进行了测试,结果表明它能准确测定 CA125 的浓度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Reduced graphene oxide based ultrasensitive resistive sensor for detection of CA125

Early-stage detection of any cancer significantly improves the survival rates by enabling clinicians to design simpler and more effective treatment options, leading to a cure or remission. Early diagnosis of ovarian cancer, the leading cause of gynaecological cancer related mortalities, relies heavily on accurate detection of the serum biomarker CA125. This work presents a simple rGO/monoclonal antibody (mAB)/bovine serum albumin (BSA) based 2-port resistive sensor for CA125. The binding of mAB on rGO was confirmed by atomic force microscopy which showed increase in thickness of the device from 1.4 nm to approximately 40–60 nm after the mAB anchored on the device. FESEM further confirmed the morphologies of rGO, rGO/mAB, and rGO/mAB/CA125. The sensor exhibited impressive response ranging from 1.28% to 113.4% for 1 pg/mL to 300 ng/mL CA125. Notably, the rGO/mAB/BSA sensor displayed high selectivity towards CA125 and a readout circuit was designed, assembled, and tested with the sensors to get a portable device for detecting CA125. The developed sensors were tested with 9 clinical samples and were found to be determining the CA125 concentration accurately.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Biosensors and Bioelectronics: X
Biosensors and Bioelectronics: X Biochemistry, Genetics and Molecular Biology-Biophysics
CiteScore
4.60
自引率
0.00%
发文量
166
审稿时长
54 days
期刊介绍: Biosensors and Bioelectronics: X, an open-access companion journal of Biosensors and Bioelectronics, boasts a 2020 Impact Factor of 10.61 (Journal Citation Reports, Clarivate Analytics 2021). Offering authors the opportunity to share their innovative work freely and globally, Biosensors and Bioelectronics: X aims to be a timely and permanent source of information. The journal publishes original research papers, review articles, communications, editorial highlights, perspectives, opinions, and commentaries at the intersection of technological advancements and high-impact applications. Manuscripts submitted to Biosensors and Bioelectronics: X are assessed based on originality and innovation in technology development or applications, aligning with the journal's goal to cater to a broad audience interested in this dynamic field.
期刊最新文献
Printed dry and ready-to-use in vitro diagnostic culture media devices for differentiation and antimicrobial susceptibility testing of bacteria Development of novel DNA aptamers and colorimetric nanozyme aptasensor for targeting multi-drug-resistant, invasive Salmonella typhimurium strain SMC25 Performance of label-free biosensors as a function of layer thickness Simple and sensitive method for in vitro monitoring of red blood cell viscoelasticity by Quartz Crystal Microbalance with dissipation monitoring (QCM-D) Targeted biosensors for intracellular lipid droplet content detection
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1