对类似车辆后车身涡流进行数值预测的湍流方法

IF 7.1 1区 工程技术 Q1 ENGINEERING, MECHANICAL International Journal of Mechanical Sciences Pub Date : 2024-08-20 DOI:10.1016/j.ijmecsci.2024.109667
{"title":"对类似车辆后车身涡流进行数值预测的湍流方法","authors":"","doi":"10.1016/j.ijmecsci.2024.109667","DOIUrl":null,"url":null,"abstract":"<div><p>The numerical prediction of aerodynamic characteristics for vehicles is crucial to both industry and academia, with various numerical approaches playing a critical role in accurately resolving flow fields. This study aims to evaluate the effectiveness of three typical numerical approaches, including RANS, IDDES, and LES in predicting the afterbody vortex flows of a generic model, specifically a slanted-base cylinder. This study involved analyzing aerodynamic coefficients, time-averaged surface flow, time-averaged surrounding flow and transient flow, revealing the capabilities of each approach. RANS offers acceptable accuracy in predicting time-averaged aerodynamic coefficients and surface flow patterns, though it falls short in capturing time-varying physical quantities. LES, despite its higher computational cost, provides a more accurate prediction for both time-averaged and transient flow behaviors, particularly in capturing flow instabilities and multi-scale fluctuations. IDDES can be prioritized when a rough understanding of transient characteristics is sufficient. This study highlights the unique strengths and limitations of three typical numerical approaches in predicting vehicle-like afterbody vortex flows, guiding the selection of appropriate methods based on specific research needs.</p></div>","PeriodicalId":56287,"journal":{"name":"International Journal of Mechanical Sciences","volume":null,"pages":null},"PeriodicalIF":7.1000,"publicationDate":"2024-08-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Turbulence approaches for numerical predictions of vehicle-like afterbody vortex flows\",\"authors\":\"\",\"doi\":\"10.1016/j.ijmecsci.2024.109667\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The numerical prediction of aerodynamic characteristics for vehicles is crucial to both industry and academia, with various numerical approaches playing a critical role in accurately resolving flow fields. This study aims to evaluate the effectiveness of three typical numerical approaches, including RANS, IDDES, and LES in predicting the afterbody vortex flows of a generic model, specifically a slanted-base cylinder. This study involved analyzing aerodynamic coefficients, time-averaged surface flow, time-averaged surrounding flow and transient flow, revealing the capabilities of each approach. RANS offers acceptable accuracy in predicting time-averaged aerodynamic coefficients and surface flow patterns, though it falls short in capturing time-varying physical quantities. LES, despite its higher computational cost, provides a more accurate prediction for both time-averaged and transient flow behaviors, particularly in capturing flow instabilities and multi-scale fluctuations. IDDES can be prioritized when a rough understanding of transient characteristics is sufficient. This study highlights the unique strengths and limitations of three typical numerical approaches in predicting vehicle-like afterbody vortex flows, guiding the selection of appropriate methods based on specific research needs.</p></div>\",\"PeriodicalId\":56287,\"journal\":{\"name\":\"International Journal of Mechanical Sciences\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":7.1000,\"publicationDate\":\"2024-08-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Mechanical Sciences\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0020740324007082\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, MECHANICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Mechanical Sciences","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0020740324007082","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0

摘要

对车辆的空气动力学特性进行数值预测对工业界和学术界都至关重要,而各种数值方法在准确解析流场方面发挥着关键作用。本研究旨在评估三种典型数值方法(包括 RANS、IDDES 和 LES)在预测通用模型(特别是斜底气缸)的车尾涡流方面的有效性。这项研究包括分析气动系数、时间平均表面流、时间平均周围流和瞬态流,揭示了每种方法的能力。RANS 在预测时均气动系数和表面流动模式方面具有可接受的精度,但在捕捉时变物理量方面存在不足。LES 尽管计算成本较高,但对时间平均值和瞬态流动行为的预测更为准确,尤其是在捕捉流动不稳定性和多尺度波动方面。当对瞬态特性有了足够的粗略了解后,可优先考虑 IDDES。本研究强调了三种典型数值方法在预测类车后车身涡流方面的独特优势和局限性,为根据具体研究需求选择合适的方法提供了指导。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Turbulence approaches for numerical predictions of vehicle-like afterbody vortex flows

The numerical prediction of aerodynamic characteristics for vehicles is crucial to both industry and academia, with various numerical approaches playing a critical role in accurately resolving flow fields. This study aims to evaluate the effectiveness of three typical numerical approaches, including RANS, IDDES, and LES in predicting the afterbody vortex flows of a generic model, specifically a slanted-base cylinder. This study involved analyzing aerodynamic coefficients, time-averaged surface flow, time-averaged surrounding flow and transient flow, revealing the capabilities of each approach. RANS offers acceptable accuracy in predicting time-averaged aerodynamic coefficients and surface flow patterns, though it falls short in capturing time-varying physical quantities. LES, despite its higher computational cost, provides a more accurate prediction for both time-averaged and transient flow behaviors, particularly in capturing flow instabilities and multi-scale fluctuations. IDDES can be prioritized when a rough understanding of transient characteristics is sufficient. This study highlights the unique strengths and limitations of three typical numerical approaches in predicting vehicle-like afterbody vortex flows, guiding the selection of appropriate methods based on specific research needs.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
International Journal of Mechanical Sciences
International Journal of Mechanical Sciences 工程技术-工程:机械
CiteScore
12.80
自引率
17.80%
发文量
769
审稿时长
19 days
期刊介绍: The International Journal of Mechanical Sciences (IJMS) serves as a global platform for the publication and dissemination of original research that contributes to a deeper scientific understanding of the fundamental disciplines within mechanical, civil, and material engineering. The primary focus of IJMS is to showcase innovative and ground-breaking work that utilizes analytical and computational modeling techniques, such as Finite Element Method (FEM), Boundary Element Method (BEM), and mesh-free methods, among others. These modeling methods are applied to diverse fields including rigid-body mechanics (e.g., dynamics, vibration, stability), structural mechanics, metal forming, advanced materials (e.g., metals, composites, cellular, smart) behavior and applications, impact mechanics, strain localization, and other nonlinear effects (e.g., large deflections, plasticity, fracture). Additionally, IJMS covers the realms of fluid mechanics (both external and internal flows), tribology, thermodynamics, and materials processing. These subjects collectively form the core of the journal's content. In summary, IJMS provides a prestigious platform for researchers to present their original contributions, shedding light on analytical and computational modeling methods in various areas of mechanical engineering, as well as exploring the behavior and application of advanced materials, fluid mechanics, thermodynamics, and materials processing.
期刊最新文献
Nonlinear dynamic behavior of a rotor-bearing system considering time-varying misalignment Energy absorption of the kirigami-inspired pyramid foldcore sandwich structures under low-velocity impact Modeling the coupled bubble-arc-droplet evolution in underwater flux-cored arc welding A GAN-based stepwise full-field mechanical prediction model for architected metamaterials Backward motion suppression in space-constrained piezoelectric pipeline robots
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1