{"title":"在缺乏适当本地遗传材料的地区利用松柏产地的遗传和环境因素","authors":"","doi":"10.1016/j.foreco.2024.122219","DOIUrl":null,"url":null,"abstract":"<div><p>Maritime pine (<em>Pinus pinaster</em> Ait.) covers vast areas and is of economic importance in southwestern Europe, particularly in Galicia (NW Spain). Galicia is a heterogeneous region with an Atlantic climate in the coast and a Mediterranean-like climate in the inland, where forest reproductive materials (FRM) with proper adaptation, productivity and timber quality are not available. Thus, there is a need for tailored FRM recommendations for reforestation in this region. <em>P. pinaster</em> is particularly sensitive to environmental variation and shows significant intraspecific genetic variability in this sensitivity, so understanding population responses to environmental variation becomes crucial for proper selection of FRM. Taking advantage of volume growth and stem straightness 13 years after planting, assessed on c. 7500 trees from 25 <em>P. pinaster</em> populations established in seven common gardens across inland Galicia, we analyzed intraspecific variation in sensitivity to climate, geographic, edaphic and site quality factors. We used Mantel correlations and factorial regression models to distinguish the environmental parameters explaining the observed <em>population × site</em> interaction. We also estimated population phenotypic plasticity across sites and the existing genetic relationship between growth and stem straightness to define the optimal selection strategy for productivity purposes. Results showed a quantitatively significant <em>population × site</em> interaction for growth whereas it was almost negligible for stem straightness. In the case of growth, no specific environmental factor was able to explain the population relative performance across test sites, being site quality the only significant factor but with low power to describe the patterns found. Population differences were maximized in higher site quality conditions, where the largest gains from planting selected populations would be expected. Tree growth and straightness were not genetically correlated. Based on these results, subdividing inland Galicia for deployment of <em>P. pinaster</em> FRM throughout specific selections for each subregion is not recommended. Selecting FRM based on average growth and its phenotypic stability should be also avoided, as both properties were negatively correlated. We recommend selecting FRM based on the results from high quality sites, where Atlantic origin populations with high levels of genetic improvement showed the fastest growth. The inclusion of selection criteria based on stem straightness did not alter recommendations given that fast growing FRM showed intermediate or slightly above-average straightness. The limited explanatory power of climate factors for the <em>population × site</em> interaction prevents adjusting recommendations in light of the projected climate change.</p></div>","PeriodicalId":12350,"journal":{"name":"Forest Ecology and Management","volume":null,"pages":null},"PeriodicalIF":3.7000,"publicationDate":"2024-08-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Genetic and environmental considerations for the utilization of Pinus pinaster Ait. provenances across a region lacking proper local genetic materials\",\"authors\":\"\",\"doi\":\"10.1016/j.foreco.2024.122219\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Maritime pine (<em>Pinus pinaster</em> Ait.) covers vast areas and is of economic importance in southwestern Europe, particularly in Galicia (NW Spain). Galicia is a heterogeneous region with an Atlantic climate in the coast and a Mediterranean-like climate in the inland, where forest reproductive materials (FRM) with proper adaptation, productivity and timber quality are not available. Thus, there is a need for tailored FRM recommendations for reforestation in this region. <em>P. pinaster</em> is particularly sensitive to environmental variation and shows significant intraspecific genetic variability in this sensitivity, so understanding population responses to environmental variation becomes crucial for proper selection of FRM. Taking advantage of volume growth and stem straightness 13 years after planting, assessed on c. 7500 trees from 25 <em>P. pinaster</em> populations established in seven common gardens across inland Galicia, we analyzed intraspecific variation in sensitivity to climate, geographic, edaphic and site quality factors. We used Mantel correlations and factorial regression models to distinguish the environmental parameters explaining the observed <em>population × site</em> interaction. We also estimated population phenotypic plasticity across sites and the existing genetic relationship between growth and stem straightness to define the optimal selection strategy for productivity purposes. Results showed a quantitatively significant <em>population × site</em> interaction for growth whereas it was almost negligible for stem straightness. In the case of growth, no specific environmental factor was able to explain the population relative performance across test sites, being site quality the only significant factor but with low power to describe the patterns found. Population differences were maximized in higher site quality conditions, where the largest gains from planting selected populations would be expected. Tree growth and straightness were not genetically correlated. Based on these results, subdividing inland Galicia for deployment of <em>P. pinaster</em> FRM throughout specific selections for each subregion is not recommended. Selecting FRM based on average growth and its phenotypic stability should be also avoided, as both properties were negatively correlated. We recommend selecting FRM based on the results from high quality sites, where Atlantic origin populations with high levels of genetic improvement showed the fastest growth. The inclusion of selection criteria based on stem straightness did not alter recommendations given that fast growing FRM showed intermediate or slightly above-average straightness. The limited explanatory power of climate factors for the <em>population × site</em> interaction prevents adjusting recommendations in light of the projected climate change.</p></div>\",\"PeriodicalId\":12350,\"journal\":{\"name\":\"Forest Ecology and Management\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.7000,\"publicationDate\":\"2024-08-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Forest Ecology and Management\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0378112724005310\",\"RegionNum\":2,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"FORESTRY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Forest Ecology and Management","FirstCategoryId":"97","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0378112724005310","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"FORESTRY","Score":null,"Total":0}
Genetic and environmental considerations for the utilization of Pinus pinaster Ait. provenances across a region lacking proper local genetic materials
Maritime pine (Pinus pinaster Ait.) covers vast areas and is of economic importance in southwestern Europe, particularly in Galicia (NW Spain). Galicia is a heterogeneous region with an Atlantic climate in the coast and a Mediterranean-like climate in the inland, where forest reproductive materials (FRM) with proper adaptation, productivity and timber quality are not available. Thus, there is a need for tailored FRM recommendations for reforestation in this region. P. pinaster is particularly sensitive to environmental variation and shows significant intraspecific genetic variability in this sensitivity, so understanding population responses to environmental variation becomes crucial for proper selection of FRM. Taking advantage of volume growth and stem straightness 13 years after planting, assessed on c. 7500 trees from 25 P. pinaster populations established in seven common gardens across inland Galicia, we analyzed intraspecific variation in sensitivity to climate, geographic, edaphic and site quality factors. We used Mantel correlations and factorial regression models to distinguish the environmental parameters explaining the observed population × site interaction. We also estimated population phenotypic plasticity across sites and the existing genetic relationship between growth and stem straightness to define the optimal selection strategy for productivity purposes. Results showed a quantitatively significant population × site interaction for growth whereas it was almost negligible for stem straightness. In the case of growth, no specific environmental factor was able to explain the population relative performance across test sites, being site quality the only significant factor but with low power to describe the patterns found. Population differences were maximized in higher site quality conditions, where the largest gains from planting selected populations would be expected. Tree growth and straightness were not genetically correlated. Based on these results, subdividing inland Galicia for deployment of P. pinaster FRM throughout specific selections for each subregion is not recommended. Selecting FRM based on average growth and its phenotypic stability should be also avoided, as both properties were negatively correlated. We recommend selecting FRM based on the results from high quality sites, where Atlantic origin populations with high levels of genetic improvement showed the fastest growth. The inclusion of selection criteria based on stem straightness did not alter recommendations given that fast growing FRM showed intermediate or slightly above-average straightness. The limited explanatory power of climate factors for the population × site interaction prevents adjusting recommendations in light of the projected climate change.
期刊介绍:
Forest Ecology and Management publishes scientific articles linking forest ecology with forest management, focusing on the application of biological, ecological and social knowledge to the management and conservation of plantations and natural forests. The scope of the journal includes all forest ecosystems of the world.
A peer-review process ensures the quality and international interest of the manuscripts accepted for publication. The journal encourages communication between scientists in disparate fields who share a common interest in ecology and forest management, bridging the gap between research workers and forest managers.
We encourage submission of papers that will have the strongest interest and value to the Journal''s international readership. Some key features of papers with strong interest include:
1. Clear connections between the ecology and management of forests;
2. Novel ideas or approaches to important challenges in forest ecology and management;
3. Studies that address a population of interest beyond the scale of single research sites, Three key points in the design of forest experiments, Forest Ecology and Management 255 (2008) 2022-2023);
4. Review Articles on timely, important topics. Authors are welcome to contact one of the editors to discuss the suitability of a potential review manuscript.
The Journal encourages proposals for special issues examining important areas of forest ecology and management. Potential guest editors should contact any of the Editors to begin discussions about topics, potential papers, and other details.