掺杂钨(W)的β-碲(β-Te)单层对氮氧化物的吸附和传感潜力:第一原理研究

IF 2.1 4区 化学 Q3 CHEMISTRY, PHYSICAL Surface Science Pub Date : 2024-08-14 DOI:10.1016/j.susc.2024.122576
Manoj Kumar, Munish Sharma
{"title":"掺杂钨(W)的β-碲(β-Te)单层对氮氧化物的吸附和传感潜力:第一原理研究","authors":"Manoj Kumar,&nbsp;Munish Sharma","doi":"10.1016/j.susc.2024.122576","DOIUrl":null,"url":null,"abstract":"<div><p>Nitrogen oxides play a significant role in various biomedical conditions, including respiratory disorders, asthma, and cardiovascular problems, underscoring the urgent need for sensitive and selective devices in biomedical applications. This study offers a comprehensive analysis of the sensitivity of β-tellurene doped with 2.22 % tungsten to nitrogen oxides (NO, NO<sub>2</sub>, and N<sub>2</sub>O). Site-specific doping of tellurene with tungsten reduces the band gap and introduces magnetization in β-tellurene. The strong adsorption energies observed for NO, NO<sub>2</sub>, and N<sub>2</sub>O at site A (-2.45 eV, -2.39 eV, and -2.80 eV, respectively) suggest that W-doped β-Te monolayers are promising candidates for gas storage for these compounds. Conversely, weaker adsorption energies for the same gases at site B (-0.74 eV, -1.74 eV, and -0.09 eV) highlights the importance of doping location. The adsorption energy values at site B indicate that W-doped β-Te monolayers have potential as sensing materials for NO and as adsorbents for NO<sub>2</sub> gas. Conversely, the weak adsorption energy for N<sub>2</sub>O at the B site demonstrates its non-interacting behaviour with the W-doped β-Te monolayer. Additionally, the negligible change in electronic properties and minimal charge transfer suggest that this configuration is unsuitable for N<sub>2</sub>O storage and sensing. The spin-resolved current-voltage characteristics of doped tellurene reveal distinct behaviors influenced by gas molecule adsorption. Overall, these findings underscore the potential of W-doped tellurene as a site-specific material for the adsorption and sensing of targeted gases.</p></div>","PeriodicalId":22100,"journal":{"name":"Surface Science","volume":"750 ","pages":"Article 122576"},"PeriodicalIF":2.1000,"publicationDate":"2024-08-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Adsorption and sensing potential of tungsten (W) doped beta tellurene (β-Te) monolayer towards nitrogen oxides: A first principle study\",\"authors\":\"Manoj Kumar,&nbsp;Munish Sharma\",\"doi\":\"10.1016/j.susc.2024.122576\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Nitrogen oxides play a significant role in various biomedical conditions, including respiratory disorders, asthma, and cardiovascular problems, underscoring the urgent need for sensitive and selective devices in biomedical applications. This study offers a comprehensive analysis of the sensitivity of β-tellurene doped with 2.22 % tungsten to nitrogen oxides (NO, NO<sub>2</sub>, and N<sub>2</sub>O). Site-specific doping of tellurene with tungsten reduces the band gap and introduces magnetization in β-tellurene. The strong adsorption energies observed for NO, NO<sub>2</sub>, and N<sub>2</sub>O at site A (-2.45 eV, -2.39 eV, and -2.80 eV, respectively) suggest that W-doped β-Te monolayers are promising candidates for gas storage for these compounds. Conversely, weaker adsorption energies for the same gases at site B (-0.74 eV, -1.74 eV, and -0.09 eV) highlights the importance of doping location. The adsorption energy values at site B indicate that W-doped β-Te monolayers have potential as sensing materials for NO and as adsorbents for NO<sub>2</sub> gas. Conversely, the weak adsorption energy for N<sub>2</sub>O at the B site demonstrates its non-interacting behaviour with the W-doped β-Te monolayer. Additionally, the negligible change in electronic properties and minimal charge transfer suggest that this configuration is unsuitable for N<sub>2</sub>O storage and sensing. The spin-resolved current-voltage characteristics of doped tellurene reveal distinct behaviors influenced by gas molecule adsorption. Overall, these findings underscore the potential of W-doped tellurene as a site-specific material for the adsorption and sensing of targeted gases.</p></div>\",\"PeriodicalId\":22100,\"journal\":{\"name\":\"Surface Science\",\"volume\":\"750 \",\"pages\":\"Article 122576\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2024-08-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Surface Science\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0039602824001274\",\"RegionNum\":4,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Surface Science","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0039602824001274","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

氮氧化物在呼吸系统疾病、哮喘和心血管问题等各种生物医学疾病中起着重要作用,因此迫切需要在生物医学应用中使用灵敏的选择性器件。本研究全面分析了掺杂 2.22% 钨的β-碲对氮氧化物(NO、NO2 和 N2O)的敏感性。钨在碲中的特定位点掺杂降低了β-碲的带隙并引入了磁化。在位点 A 上观察到的 NO、NO2 和 N2O 的强吸附能(分别为 -2.45 eV、-2.39 eV 和 -2.80 eV)表明,掺杂 W 的 β-Te 单层很有希望成为这些化合物的气体存储候选材料。相反,相同气体在 B 位点的吸附能较弱(-0.74 eV、-1.74 eV 和 -0.09 eV),这凸显了掺杂位置的重要性。B 位点的吸附能值表明,掺 W 的 β-Te 单层具有作为 NO 传感材料和 NO2 气体吸附剂的潜力。相反,N2O 在 B 位点的吸附能很弱,这表明它与掺 W 的 β-Te 单层没有相互作用。此外,电子特性的变化可以忽略不计,电荷转移也微乎其微,这表明这种结构不适合用于 N2O 的储存和传感。掺杂聚烯烃的自旋分辨电流-电压特性显示出受气体分子吸附影响的独特行为。总之,这些发现强调了掺 W 的碲烯作为一种特定位点材料在吸附和传感目标气体方面的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Adsorption and sensing potential of tungsten (W) doped beta tellurene (β-Te) monolayer towards nitrogen oxides: A first principle study

Nitrogen oxides play a significant role in various biomedical conditions, including respiratory disorders, asthma, and cardiovascular problems, underscoring the urgent need for sensitive and selective devices in biomedical applications. This study offers a comprehensive analysis of the sensitivity of β-tellurene doped with 2.22 % tungsten to nitrogen oxides (NO, NO2, and N2O). Site-specific doping of tellurene with tungsten reduces the band gap and introduces magnetization in β-tellurene. The strong adsorption energies observed for NO, NO2, and N2O at site A (-2.45 eV, -2.39 eV, and -2.80 eV, respectively) suggest that W-doped β-Te monolayers are promising candidates for gas storage for these compounds. Conversely, weaker adsorption energies for the same gases at site B (-0.74 eV, -1.74 eV, and -0.09 eV) highlights the importance of doping location. The adsorption energy values at site B indicate that W-doped β-Te monolayers have potential as sensing materials for NO and as adsorbents for NO2 gas. Conversely, the weak adsorption energy for N2O at the B site demonstrates its non-interacting behaviour with the W-doped β-Te monolayer. Additionally, the negligible change in electronic properties and minimal charge transfer suggest that this configuration is unsuitable for N2O storage and sensing. The spin-resolved current-voltage characteristics of doped tellurene reveal distinct behaviors influenced by gas molecule adsorption. Overall, these findings underscore the potential of W-doped tellurene as a site-specific material for the adsorption and sensing of targeted gases.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Surface Science
Surface Science 化学-物理:凝聚态物理
CiteScore
3.30
自引率
5.30%
发文量
137
审稿时长
25 days
期刊介绍: Surface Science is devoted to elucidating the fundamental aspects of chemistry and physics occurring at a wide range of surfaces and interfaces and to disseminating this knowledge fast. The journal welcomes a broad spectrum of topics, including but not limited to: • model systems (e.g. in Ultra High Vacuum) under well-controlled reactive conditions • nanoscale science and engineering, including manipulation of matter at the atomic/molecular scale and assembly phenomena • reactivity of surfaces as related to various applied areas including heterogeneous catalysis, chemistry at electrified interfaces, and semiconductors functionalization • phenomena at interfaces relevant to energy storage and conversion, and fuels production and utilization • surface reactivity for environmental protection and pollution remediation • interactions at surfaces of soft matter, including polymers and biomaterials. Both experimental and theoretical work, including modeling, is within the scope of the journal. Work published in Surface Science reaches a wide readership, from chemistry and physics to biology and materials science and engineering, providing an excellent forum for cross-fertilization of ideas and broad dissemination of scientific discoveries.
期刊最新文献
Electronic reconfiguration induced by dynamic hydroxyl decoration facilitates electrochemical nitrate reduction to ammonia Editorial Board Thermodynamic and kinetic analysis of the oxygen evolution reaction on TiO2 (100) and (101) surfaces: A DFT study Surface science study on catalytic surfaces under working conditions with soft-X-ray surface spectroscopy at the Photon Factory Time-resolved ambient pressure x-ray photoelectron spectroscopy: Advancing the operando study of ALD chemistry
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1