利用多云环境确保结构化数据安全的混合分片技术(MFT-SSD)

IF 4.4 3区 计算机科学 Q1 COMPUTER SCIENCE, INFORMATION SYSTEMS Ad Hoc Networks Pub Date : 2024-08-22 DOI:10.1016/j.adhoc.2024.103625
{"title":"利用多云环境确保结构化数据安全的混合分片技术(MFT-SSD)","authors":"","doi":"10.1016/j.adhoc.2024.103625","DOIUrl":null,"url":null,"abstract":"<div><p>Large data storage security is a topic of great interest to researchers, particularly in the age of big data where preserving data from theft, unauthorized access, and storage failure has become a crucial concern. To safeguard such data, encryption/decryption approaches have been employed, which are time-consuming and inefficient. The aim of this study is to develop a method, namely Mixed Fragmentation Technique for Securing Structured Data using Multi-Cloud Environment (MFT-SSD), for protecting large-scale data stored in a multi-cloud environment. This prevents insider attacks by adopting a mixed fragmentation approach to split the data into three files. For example, healthcare data is will be distributed among many clouds, each of which stores a partially unrecognized fraction of data without the need for an encryption or decryption layer. Comparing MFT-SSD to various encryption/decryption algorithms, our results show significant improvement; hence, the total performance of big data security is also improved.</p></div>","PeriodicalId":55555,"journal":{"name":"Ad Hoc Networks","volume":null,"pages":null},"PeriodicalIF":4.4000,"publicationDate":"2024-08-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Mixed fragmentation technique for securing structured data using multi-cloud environment (MFT-SSD)\",\"authors\":\"\",\"doi\":\"10.1016/j.adhoc.2024.103625\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Large data storage security is a topic of great interest to researchers, particularly in the age of big data where preserving data from theft, unauthorized access, and storage failure has become a crucial concern. To safeguard such data, encryption/decryption approaches have been employed, which are time-consuming and inefficient. The aim of this study is to develop a method, namely Mixed Fragmentation Technique for Securing Structured Data using Multi-Cloud Environment (MFT-SSD), for protecting large-scale data stored in a multi-cloud environment. This prevents insider attacks by adopting a mixed fragmentation approach to split the data into three files. For example, healthcare data is will be distributed among many clouds, each of which stores a partially unrecognized fraction of data without the need for an encryption or decryption layer. Comparing MFT-SSD to various encryption/decryption algorithms, our results show significant improvement; hence, the total performance of big data security is also improved.</p></div>\",\"PeriodicalId\":55555,\"journal\":{\"name\":\"Ad Hoc Networks\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.4000,\"publicationDate\":\"2024-08-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Ad Hoc Networks\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1570870524002361\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ad Hoc Networks","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1570870524002361","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0

摘要

大数据存储安全是研究人员非常感兴趣的一个话题,尤其是在大数据时代,防止数据被盗、未经授权的访问和存储故障已成为一个至关重要的问题。为了保护这些数据,人们采用了既耗时又低效的加密/解密方法。本研究旨在开发一种方法,即利用多云环境保护结构化数据安全的混合碎片技术(MFT-SSD),用于保护存储在多云环境中的大规模数据。该技术通过采用混合分片方法将数据分成三个文件,从而防止内部攻击。例如,医疗保健数据将分布在许多云中,每个云都存储了部分未识别的数据,无需加密或解密层。将 MFT-SSD 与各种加密/解密算法进行比较,我们的结果表明,MFT-SSD 有了显著的改进;因此,大数据安全的总体性能也得到了提高。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Mixed fragmentation technique for securing structured data using multi-cloud environment (MFT-SSD)

Large data storage security is a topic of great interest to researchers, particularly in the age of big data where preserving data from theft, unauthorized access, and storage failure has become a crucial concern. To safeguard such data, encryption/decryption approaches have been employed, which are time-consuming and inefficient. The aim of this study is to develop a method, namely Mixed Fragmentation Technique for Securing Structured Data using Multi-Cloud Environment (MFT-SSD), for protecting large-scale data stored in a multi-cloud environment. This prevents insider attacks by adopting a mixed fragmentation approach to split the data into three files. For example, healthcare data is will be distributed among many clouds, each of which stores a partially unrecognized fraction of data without the need for an encryption or decryption layer. Comparing MFT-SSD to various encryption/decryption algorithms, our results show significant improvement; hence, the total performance of big data security is also improved.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Ad Hoc Networks
Ad Hoc Networks 工程技术-电信学
CiteScore
10.20
自引率
4.20%
发文量
131
审稿时长
4.8 months
期刊介绍: The Ad Hoc Networks is an international and archival journal providing a publication vehicle for complete coverage of all topics of interest to those involved in ad hoc and sensor networking areas. The Ad Hoc Networks considers original, high quality and unpublished contributions addressing all aspects of ad hoc and sensor networks. Specific areas of interest include, but are not limited to: Mobile and Wireless Ad Hoc Networks Sensor Networks Wireless Local and Personal Area Networks Home Networks Ad Hoc Networks of Autonomous Intelligent Systems Novel Architectures for Ad Hoc and Sensor Networks Self-organizing Network Architectures and Protocols Transport Layer Protocols Routing protocols (unicast, multicast, geocast, etc.) Media Access Control Techniques Error Control Schemes Power-Aware, Low-Power and Energy-Efficient Designs Synchronization and Scheduling Issues Mobility Management Mobility-Tolerant Communication Protocols Location Tracking and Location-based Services Resource and Information Management Security and Fault-Tolerance Issues Hardware and Software Platforms, Systems, and Testbeds Experimental and Prototype Results Quality-of-Service Issues Cross-Layer Interactions Scalability Issues Performance Analysis and Simulation of Protocols.
期刊最新文献
TAVA: Traceable anonymity-self-controllable V2X Authentication over dynamic multiple charging-service providers RL-based mobile edge computing scheme for high reliability low latency services in UAV-aided IIoT networks Editorial Board PLLM-CS: Pre-trained Large Language Model (LLM) for cyber threat detection in satellite networks A two-context-aware approach for navigation: A case study for vehicular route recommendation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1