通过机器学习改进生物质气化模型预测

IF 3.9 2区 工程技术 Q2 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS Computers & Chemical Engineering Pub Date : 2024-08-10 DOI:10.1016/j.compchemeng.2024.108834
Aban Sakheta , Thomas Raj , Richi Nayak , Ian O'Hara , Jerome Ramirez
{"title":"通过机器学习改进生物质气化模型预测","authors":"Aban Sakheta ,&nbsp;Thomas Raj ,&nbsp;Richi Nayak ,&nbsp;Ian O'Hara ,&nbsp;Jerome Ramirez","doi":"10.1016/j.compchemeng.2024.108834","DOIUrl":null,"url":null,"abstract":"<div><p>Gasification of lignocellulosic biomass can be used to produce syngas used as a biorefinery feedstock. To facilitate the commercialisation of the gasification process, models are used to predict the outputs, simulate the impacts of irregular circumstances, and analyse process feasibility. This paper presents a hybrid model combining Aspen Plus and machine learning (ML) algorithms to enhance the prediction of gasification outputs. A base case gasification process flowsheet simulation was implemented in Aspen Plus based on assumed thermodynamic equilibrium conditions which can lead to inaccurate results. To address this, six ML algorithms were applied to collected experimental data and analysed for accuracy and efficiency. The feature importance, accuracy improvement, and the effect of implementing the ML predictions in the gasification block on the rest of the flowsheet were investigated. This paper emphasises the need of higher accuracy models and the great potential of ML approaches to offer high accurate predictions.</p></div>","PeriodicalId":286,"journal":{"name":"Computers & Chemical Engineering","volume":"191 ","pages":"Article 108834"},"PeriodicalIF":3.9000,"publicationDate":"2024-08-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0098135424002527/pdfft?md5=16d3690a4f5ab0fe1a7e87a18851495e&pid=1-s2.0-S0098135424002527-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Improved prediction of biomass gasification models through machine learning\",\"authors\":\"Aban Sakheta ,&nbsp;Thomas Raj ,&nbsp;Richi Nayak ,&nbsp;Ian O'Hara ,&nbsp;Jerome Ramirez\",\"doi\":\"10.1016/j.compchemeng.2024.108834\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Gasification of lignocellulosic biomass can be used to produce syngas used as a biorefinery feedstock. To facilitate the commercialisation of the gasification process, models are used to predict the outputs, simulate the impacts of irregular circumstances, and analyse process feasibility. This paper presents a hybrid model combining Aspen Plus and machine learning (ML) algorithms to enhance the prediction of gasification outputs. A base case gasification process flowsheet simulation was implemented in Aspen Plus based on assumed thermodynamic equilibrium conditions which can lead to inaccurate results. To address this, six ML algorithms were applied to collected experimental data and analysed for accuracy and efficiency. The feature importance, accuracy improvement, and the effect of implementing the ML predictions in the gasification block on the rest of the flowsheet were investigated. This paper emphasises the need of higher accuracy models and the great potential of ML approaches to offer high accurate predictions.</p></div>\",\"PeriodicalId\":286,\"journal\":{\"name\":\"Computers & Chemical Engineering\",\"volume\":\"191 \",\"pages\":\"Article 108834\"},\"PeriodicalIF\":3.9000,\"publicationDate\":\"2024-08-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S0098135424002527/pdfft?md5=16d3690a4f5ab0fe1a7e87a18851495e&pid=1-s2.0-S0098135424002527-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computers & Chemical Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0098135424002527\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computers & Chemical Engineering","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0098135424002527","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

摘要

木质纤维素生物质气化可用于生产作为生物精炼原料的合成气。为了促进气化工艺的商业化,需要使用模型来预测产出、模拟不规则情况的影响并分析工艺的可行性。本文介绍了一种结合 Aspen Plus 和机器学习(ML)算法的混合模型,以提高气化产出的预测能力。Aspen Plus 基于假定的热力学平衡条件实施了基本案例气化工艺流程表模拟,这可能导致结果不准确。为了解决这个问题,对收集到的实验数据应用了六种 ML 算法,并对其准确性和效率进行了分析。研究了特征的重要性、准确性的提高以及在气化区块实施 ML 预测对流程图其他部分的影响。本文强调了对更高精度模型的需求,以及 ML 方法在提供高精度预测方面的巨大潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Improved prediction of biomass gasification models through machine learning

Gasification of lignocellulosic biomass can be used to produce syngas used as a biorefinery feedstock. To facilitate the commercialisation of the gasification process, models are used to predict the outputs, simulate the impacts of irregular circumstances, and analyse process feasibility. This paper presents a hybrid model combining Aspen Plus and machine learning (ML) algorithms to enhance the prediction of gasification outputs. A base case gasification process flowsheet simulation was implemented in Aspen Plus based on assumed thermodynamic equilibrium conditions which can lead to inaccurate results. To address this, six ML algorithms were applied to collected experimental data and analysed for accuracy and efficiency. The feature importance, accuracy improvement, and the effect of implementing the ML predictions in the gasification block on the rest of the flowsheet were investigated. This paper emphasises the need of higher accuracy models and the great potential of ML approaches to offer high accurate predictions.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Computers & Chemical Engineering
Computers & Chemical Engineering 工程技术-工程:化工
CiteScore
8.70
自引率
14.00%
发文量
374
审稿时长
70 days
期刊介绍: Computers & Chemical Engineering is primarily a journal of record for new developments in the application of computing and systems technology to chemical engineering problems.
期刊最新文献
Editorial Board Highly accelerated kinetic Monte Carlo models for depolymerisation systems An optimization approach for sustainable and resilient closed-loop floating solar photovoltaic supply chain network design A semi-supervised learning algorithm for high and low-frequency variable imbalances in industrial data Prediction of viscoelastic and printability properties on binder-free TiO2-based ceramic pastes by DIW through a machine learning approach
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1