Bin Su , Yange Li , Zheng Han , Yangfan Ma , Weidong Wang , Bo Ruan , Wei Guo , Wendu Xie , Shaofeng Tan
{"title":"基于地形和矢量的 3D-SPH 物理量提取算法及其在泥石流夹带模型中的应用","authors":"Bin Su , Yange Li , Zheng Han , Yangfan Ma , Weidong Wang , Bo Ruan , Wei Guo , Wendu Xie , Shaofeng Tan","doi":"10.1016/j.enggeo.2024.107693","DOIUrl":null,"url":null,"abstract":"<div><p>Extraction of physical quantities such as flow depth and velocities, is one of the major purposes of geophysical flow numerical modeling and critical for estimating consequent impact forces and sediment entrainment. It is simple in nature for mesh-based models but presenting challenges in three-dimensional smoothed particle hydrodynamics (SPH) schemes. The difficulties lie in the substantial number of particles and their uneven spatial-temporal distribution, particularly over complex topography. Inspired by our previous surface cell (SC) -based approach, we propose a novel topography-based and vectorized algorithm that significantly enhances the ability to extract physical quantities over complex topography. In the proposed algorithm, geomorphologic characteristics are mathematically represented by topographical normal vectors. The correlations of physical quantities with distinct coordinate descriptions are established through the vectorization concept, ultimately leading to effective extraction of physical quantities in SPH form over complex topography. This algorithm provides an important tool to incorporate topography-linked physical models within discretized frameworks. To validate its effectiveness, we employed the algorithm to integrate the debris-flow entrainment law with our previous HBP-SPH model, utilizing the 2010 Yohutagawa debris-flow event in Japan as a case study. The results demonstrate a good agreement between the numerical simulation and on-site observation. Discussion regarding the applicability and limitation of the algorithm concludes the paper.</p></div>","PeriodicalId":11567,"journal":{"name":"Engineering Geology","volume":"340 ","pages":"Article 107693"},"PeriodicalIF":6.9000,"publicationDate":"2024-08-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Topography-based and vectorized algorithm for extracting physical quantities in 3D-SPH form and its application in debris-flow entrainment modeling\",\"authors\":\"Bin Su , Yange Li , Zheng Han , Yangfan Ma , Weidong Wang , Bo Ruan , Wei Guo , Wendu Xie , Shaofeng Tan\",\"doi\":\"10.1016/j.enggeo.2024.107693\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Extraction of physical quantities such as flow depth and velocities, is one of the major purposes of geophysical flow numerical modeling and critical for estimating consequent impact forces and sediment entrainment. It is simple in nature for mesh-based models but presenting challenges in three-dimensional smoothed particle hydrodynamics (SPH) schemes. The difficulties lie in the substantial number of particles and their uneven spatial-temporal distribution, particularly over complex topography. Inspired by our previous surface cell (SC) -based approach, we propose a novel topography-based and vectorized algorithm that significantly enhances the ability to extract physical quantities over complex topography. In the proposed algorithm, geomorphologic characteristics are mathematically represented by topographical normal vectors. The correlations of physical quantities with distinct coordinate descriptions are established through the vectorization concept, ultimately leading to effective extraction of physical quantities in SPH form over complex topography. This algorithm provides an important tool to incorporate topography-linked physical models within discretized frameworks. To validate its effectiveness, we employed the algorithm to integrate the debris-flow entrainment law with our previous HBP-SPH model, utilizing the 2010 Yohutagawa debris-flow event in Japan as a case study. The results demonstrate a good agreement between the numerical simulation and on-site observation. Discussion regarding the applicability and limitation of the algorithm concludes the paper.</p></div>\",\"PeriodicalId\":11567,\"journal\":{\"name\":\"Engineering Geology\",\"volume\":\"340 \",\"pages\":\"Article 107693\"},\"PeriodicalIF\":6.9000,\"publicationDate\":\"2024-08-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Engineering Geology\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S001379522400293X\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, GEOLOGICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Engineering Geology","FirstCategoryId":"89","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S001379522400293X","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, GEOLOGICAL","Score":null,"Total":0}
Topography-based and vectorized algorithm for extracting physical quantities in 3D-SPH form and its application in debris-flow entrainment modeling
Extraction of physical quantities such as flow depth and velocities, is one of the major purposes of geophysical flow numerical modeling and critical for estimating consequent impact forces and sediment entrainment. It is simple in nature for mesh-based models but presenting challenges in three-dimensional smoothed particle hydrodynamics (SPH) schemes. The difficulties lie in the substantial number of particles and their uneven spatial-temporal distribution, particularly over complex topography. Inspired by our previous surface cell (SC) -based approach, we propose a novel topography-based and vectorized algorithm that significantly enhances the ability to extract physical quantities over complex topography. In the proposed algorithm, geomorphologic characteristics are mathematically represented by topographical normal vectors. The correlations of physical quantities with distinct coordinate descriptions are established through the vectorization concept, ultimately leading to effective extraction of physical quantities in SPH form over complex topography. This algorithm provides an important tool to incorporate topography-linked physical models within discretized frameworks. To validate its effectiveness, we employed the algorithm to integrate the debris-flow entrainment law with our previous HBP-SPH model, utilizing the 2010 Yohutagawa debris-flow event in Japan as a case study. The results demonstrate a good agreement between the numerical simulation and on-site observation. Discussion regarding the applicability and limitation of the algorithm concludes the paper.
期刊介绍:
Engineering Geology, an international interdisciplinary journal, serves as a bridge between earth sciences and engineering, focusing on geological and geotechnical engineering. It welcomes studies with relevance to engineering, environmental concerns, and safety, catering to engineering geologists with backgrounds in geology or civil/mining engineering. Topics include applied geomorphology, structural geology, geophysics, geochemistry, environmental geology, hydrogeology, land use planning, natural hazards, remote sensing, soil and rock mechanics, and applied geotechnical engineering. The journal provides a platform for research at the intersection of geology and engineering disciplines.