Ricardo Sanz , Iván Sala-Mira , Clara Furió-Novejarque , Pedro García , José-Luis Díez , Jorge Bondia
{"title":"对可协调胰岛素、胰高血糖素和救命碳水化合物的可定制全自主人工胰腺进行硅验证","authors":"Ricardo Sanz , Iván Sala-Mira , Clara Furió-Novejarque , Pedro García , José-Luis Díez , Jorge Bondia","doi":"10.1016/j.bbe.2024.08.003","DOIUrl":null,"url":null,"abstract":"<div><p>Artificial pancreas systems should be designed considering different patient profiles, which is challenging from a control theory perspective. In this paper, a flexible-hybrid dual-hormone control algorithm for an artificial pancreas is proposed. The algorithm handles announced/unannounced meals by means of a non-interacting feedforward scheme that safely incorporates prandial boluses. Also, a coordination strategy is employed to distribute the counter-regulatory actions, which can be delivered as a continuous glucagon infusion via an automated pump, as an oral rescue carbohydrate recommendation, or as a rescue glucagon dose recommendation to be administrated through a glucagon pen. The different configurations of the proposed controller were evaluated in silico using a 14-day virtual scenario with random meal intakes and exercise sessions, achieving above 80% time-in-range and low time spent in hypoglycemia.</p></div>","PeriodicalId":55381,"journal":{"name":"Biocybernetics and Biomedical Engineering","volume":"44 3","pages":"Pages 560-568"},"PeriodicalIF":5.3000,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0208521624000561/pdfft?md5=5dc60e4e8ea6556e7fccf8eae8cffa24&pid=1-s2.0-S0208521624000561-main.pdf","citationCount":"0","resultStr":"{\"title\":\"In silico validation of a customizable fully-autonomous artificial pancreas with coordinated insulin, glucagon and rescue carbohydrates\",\"authors\":\"Ricardo Sanz , Iván Sala-Mira , Clara Furió-Novejarque , Pedro García , José-Luis Díez , Jorge Bondia\",\"doi\":\"10.1016/j.bbe.2024.08.003\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Artificial pancreas systems should be designed considering different patient profiles, which is challenging from a control theory perspective. In this paper, a flexible-hybrid dual-hormone control algorithm for an artificial pancreas is proposed. The algorithm handles announced/unannounced meals by means of a non-interacting feedforward scheme that safely incorporates prandial boluses. Also, a coordination strategy is employed to distribute the counter-regulatory actions, which can be delivered as a continuous glucagon infusion via an automated pump, as an oral rescue carbohydrate recommendation, or as a rescue glucagon dose recommendation to be administrated through a glucagon pen. The different configurations of the proposed controller were evaluated in silico using a 14-day virtual scenario with random meal intakes and exercise sessions, achieving above 80% time-in-range and low time spent in hypoglycemia.</p></div>\",\"PeriodicalId\":55381,\"journal\":{\"name\":\"Biocybernetics and Biomedical Engineering\",\"volume\":\"44 3\",\"pages\":\"Pages 560-568\"},\"PeriodicalIF\":5.3000,\"publicationDate\":\"2024-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S0208521624000561/pdfft?md5=5dc60e4e8ea6556e7fccf8eae8cffa24&pid=1-s2.0-S0208521624000561-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biocybernetics and Biomedical Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0208521624000561\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, BIOMEDICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biocybernetics and Biomedical Engineering","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0208521624000561","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
In silico validation of a customizable fully-autonomous artificial pancreas with coordinated insulin, glucagon and rescue carbohydrates
Artificial pancreas systems should be designed considering different patient profiles, which is challenging from a control theory perspective. In this paper, a flexible-hybrid dual-hormone control algorithm for an artificial pancreas is proposed. The algorithm handles announced/unannounced meals by means of a non-interacting feedforward scheme that safely incorporates prandial boluses. Also, a coordination strategy is employed to distribute the counter-regulatory actions, which can be delivered as a continuous glucagon infusion via an automated pump, as an oral rescue carbohydrate recommendation, or as a rescue glucagon dose recommendation to be administrated through a glucagon pen. The different configurations of the proposed controller were evaluated in silico using a 14-day virtual scenario with random meal intakes and exercise sessions, achieving above 80% time-in-range and low time spent in hypoglycemia.
期刊介绍:
Biocybernetics and Biomedical Engineering is a quarterly journal, founded in 1981, devoted to publishing the results of original, innovative and creative research investigations in the field of Biocybernetics and biomedical engineering, which bridges mathematical, physical, chemical and engineering methods and technology to analyse physiological processes in living organisms as well as to develop methods, devices and systems used in biology and medicine, mainly in medical diagnosis, monitoring systems and therapy. The Journal''s mission is to advance scientific discovery into new or improved standards of care, and promotion a wide-ranging exchange between science and its application to humans.