{"title":"鉴定参与一种新发现的鱼腥草烷二萜氧化修饰的三种新型 P450 酶","authors":"","doi":"10.1016/j.bioorg.2024.107726","DOIUrl":null,"url":null,"abstract":"<div><p>Fusicoccane (FC)-type diterpenoids are a class of diterpenoids characterized by a unique 5–8–5 ring system and exhibit diverse biological activities. Recently, we identified a novel FC-type diterpene synthase MgMS, which produces a myrothec-15(17)-en-7-ol (<strong>1</strong>) hydrocarbon skeleton, however, its tailoring congeners have not been elucidated. Here, we discovered two additional gene clusters <em>Bn</em> and <em>Np</em>, each encoding a highly homologous terpene synthase to MgMS but distinct tailoring enzymes. Heterologous expression of the terpene synthases BnMS and NpMS yielded the same product as MgMS. Subsequent introduction of three P450 enzymes MgP450, BnP450 and NpP450 from individual gene clusters resulted in four new FC-type diterpenoids <strong>2</strong>–<strong>5</strong>. Notably, MgP450 serves as the first enzyme responsible for hydroxylation of the C19 methyl group, whereas NpP450 functions as a multifunctional P450 enzyme involved in the oxidations at C5, C6, and C19 positions of the 5–8–5 tricyclic skeleton. C5 oxidation of the hydrocarbon skeleton <strong>1</strong> led to broadening of the NMR signals and incomplete spectra, which was resolved by high-temperature NMR spectral analysis.</p></div>","PeriodicalId":257,"journal":{"name":"Bioorganic Chemistry","volume":null,"pages":null},"PeriodicalIF":4.5000,"publicationDate":"2024-08-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Identification of three novel P450 enzymes involved in the oxidative modification of a newly discovered fusicoccane diterpene\",\"authors\":\"\",\"doi\":\"10.1016/j.bioorg.2024.107726\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Fusicoccane (FC)-type diterpenoids are a class of diterpenoids characterized by a unique 5–8–5 ring system and exhibit diverse biological activities. Recently, we identified a novel FC-type diterpene synthase MgMS, which produces a myrothec-15(17)-en-7-ol (<strong>1</strong>) hydrocarbon skeleton, however, its tailoring congeners have not been elucidated. Here, we discovered two additional gene clusters <em>Bn</em> and <em>Np</em>, each encoding a highly homologous terpene synthase to MgMS but distinct tailoring enzymes. Heterologous expression of the terpene synthases BnMS and NpMS yielded the same product as MgMS. Subsequent introduction of three P450 enzymes MgP450, BnP450 and NpP450 from individual gene clusters resulted in four new FC-type diterpenoids <strong>2</strong>–<strong>5</strong>. Notably, MgP450 serves as the first enzyme responsible for hydroxylation of the C19 methyl group, whereas NpP450 functions as a multifunctional P450 enzyme involved in the oxidations at C5, C6, and C19 positions of the 5–8–5 tricyclic skeleton. C5 oxidation of the hydrocarbon skeleton <strong>1</strong> led to broadening of the NMR signals and incomplete spectra, which was resolved by high-temperature NMR spectral analysis.</p></div>\",\"PeriodicalId\":257,\"journal\":{\"name\":\"Bioorganic Chemistry\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.5000,\"publicationDate\":\"2024-08-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bioorganic Chemistry\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S004520682400631X\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioorganic Chemistry","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S004520682400631X","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
Identification of three novel P450 enzymes involved in the oxidative modification of a newly discovered fusicoccane diterpene
Fusicoccane (FC)-type diterpenoids are a class of diterpenoids characterized by a unique 5–8–5 ring system and exhibit diverse biological activities. Recently, we identified a novel FC-type diterpene synthase MgMS, which produces a myrothec-15(17)-en-7-ol (1) hydrocarbon skeleton, however, its tailoring congeners have not been elucidated. Here, we discovered two additional gene clusters Bn and Np, each encoding a highly homologous terpene synthase to MgMS but distinct tailoring enzymes. Heterologous expression of the terpene synthases BnMS and NpMS yielded the same product as MgMS. Subsequent introduction of three P450 enzymes MgP450, BnP450 and NpP450 from individual gene clusters resulted in four new FC-type diterpenoids 2–5. Notably, MgP450 serves as the first enzyme responsible for hydroxylation of the C19 methyl group, whereas NpP450 functions as a multifunctional P450 enzyme involved in the oxidations at C5, C6, and C19 positions of the 5–8–5 tricyclic skeleton. C5 oxidation of the hydrocarbon skeleton 1 led to broadening of the NMR signals and incomplete spectra, which was resolved by high-temperature NMR spectral analysis.
期刊介绍:
Bioorganic Chemistry publishes research that addresses biological questions at the molecular level, using organic chemistry and principles of physical organic chemistry. The scope of the journal covers a range of topics at the organic chemistry-biology interface, including: enzyme catalysis, biotransformation and enzyme inhibition; nucleic acids chemistry; medicinal chemistry; natural product chemistry, natural product synthesis and natural product biosynthesis; antimicrobial agents; lipid and peptide chemistry; biophysical chemistry; biological probes; bio-orthogonal chemistry and biomimetic chemistry.
For manuscripts dealing with synthetic bioactive compounds, the Journal requires that the molecular target of the compounds described must be known, and must be demonstrated experimentally in the manuscript. For studies involving natural products, if the molecular target is unknown, some data beyond simple cell-based toxicity studies to provide insight into the mechanism of action is required. Studies supported by molecular docking are welcome, but must be supported by experimental data. The Journal does not consider manuscripts that are purely theoretical or computational in nature.
The Journal publishes regular articles, short communications and reviews. Reviews are normally invited by Editors or Editorial Board members. Authors of unsolicited reviews should first contact an Editor or Editorial Board member to determine whether the proposed article is within the scope of the Journal.