基于机器学习的印度河三角洲红树林生态系统动态监测

IF 3.7 2区 农林科学 Q1 FORESTRY Forest Ecology and Management Pub Date : 2024-08-24 DOI:10.1016/j.foreco.2024.122231
{"title":"基于机器学习的印度河三角洲红树林生态系统动态监测","authors":"","doi":"10.1016/j.foreco.2024.122231","DOIUrl":null,"url":null,"abstract":"<div><p>Mangrove forests play a vital role in carbon sequestration, typhoon-induced wave attenuation, and the provision of ecological services. However, mangrove ecosystems have experienced large-scale loss globally due to rising sea levels and anthropogenic activities. This study investigates the dynamic changes in mangrove cover within the mega-Indus delta, the largest delta in Pakistan and Southern Asia, using multi-temporal remote sensing data and machine learning techniques from 1988 to 2023. The results indicate an increasing trend in mangrove areas in the Indus Delta, with an average annual growth rate of 18.72 %. The spatial distribution of mangrove forests tends to concentrate towards the landward areas, extending along tidal channels, while losses primarily occur in the seaward regions. Rising sea levels pose a potential threat to the survival of these mangroves. The strong southwest monsoon-driven waves are the leading cause of shoreline erosion of the Indus Delta mangroves. Meanwhile, the reduction in riverine sediment discharge is not associated with the increase in mangrove area. Instead, the tidal currents influenced by the southwest monsoon carry sediments into the delta’s tidal channels, causing them to fill and create suitable habitats for mangroves, which are the primary drivers of the observed mangrove expansion in the Indus Delta. Additionally, afforestation activities observed in the northwest and southwest parts of the study area have contributed to the restoration of mangroves. The loss of mangroves in the northernmost part of the northwest region was attributed to an oil spill incident. This study highlights the dynamic nature of mangrove ecosystems in the Indus Delta, characterized by an arid climate and low population density. The findings provide valuable insights into the factors influencing mangrove gain and loss and can inform management strategies for global mangrove restoration efforts.</p></div>","PeriodicalId":12350,"journal":{"name":"Forest Ecology and Management","volume":null,"pages":null},"PeriodicalIF":3.7000,"publicationDate":"2024-08-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Machine learning-based monitoring of mangrove ecosystem dynamics in the Indus Delta\",\"authors\":\"\",\"doi\":\"10.1016/j.foreco.2024.122231\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Mangrove forests play a vital role in carbon sequestration, typhoon-induced wave attenuation, and the provision of ecological services. However, mangrove ecosystems have experienced large-scale loss globally due to rising sea levels and anthropogenic activities. This study investigates the dynamic changes in mangrove cover within the mega-Indus delta, the largest delta in Pakistan and Southern Asia, using multi-temporal remote sensing data and machine learning techniques from 1988 to 2023. The results indicate an increasing trend in mangrove areas in the Indus Delta, with an average annual growth rate of 18.72 %. The spatial distribution of mangrove forests tends to concentrate towards the landward areas, extending along tidal channels, while losses primarily occur in the seaward regions. Rising sea levels pose a potential threat to the survival of these mangroves. The strong southwest monsoon-driven waves are the leading cause of shoreline erosion of the Indus Delta mangroves. Meanwhile, the reduction in riverine sediment discharge is not associated with the increase in mangrove area. Instead, the tidal currents influenced by the southwest monsoon carry sediments into the delta’s tidal channels, causing them to fill and create suitable habitats for mangroves, which are the primary drivers of the observed mangrove expansion in the Indus Delta. Additionally, afforestation activities observed in the northwest and southwest parts of the study area have contributed to the restoration of mangroves. The loss of mangroves in the northernmost part of the northwest region was attributed to an oil spill incident. This study highlights the dynamic nature of mangrove ecosystems in the Indus Delta, characterized by an arid climate and low population density. The findings provide valuable insights into the factors influencing mangrove gain and loss and can inform management strategies for global mangrove restoration efforts.</p></div>\",\"PeriodicalId\":12350,\"journal\":{\"name\":\"Forest Ecology and Management\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.7000,\"publicationDate\":\"2024-08-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Forest Ecology and Management\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0378112724005437\",\"RegionNum\":2,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"FORESTRY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Forest Ecology and Management","FirstCategoryId":"97","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0378112724005437","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"FORESTRY","Score":null,"Total":0}
引用次数: 0

摘要

红树林在碳封存、台风引起的波浪衰减和提供生态服务方面发挥着至关重要的作用。然而,由于海平面上升和人为活动,红树林生态系统在全球范围内经历了大规模的损失。本研究利用 1988 年至 2023 年的多时空遥感数据和机器学习技术,调查了巴基斯坦和南亚最大的三角洲--特大印度河三角洲内红树林覆盖率的动态变化。结果表明,印度河三角洲的红树林面积呈上升趋势,年平均增长率为 18.72%。红树林的空间分布趋向于向陆地集中,沿着潮汐通道延伸,而损失主要发生在向海地区。海平面上升对这些红树林的生存构成了潜在威胁。强烈的西南季风引起的海浪是印度河三角洲红树林海岸线被侵蚀的主要原因。同时,河流沉积物排放量的减少与红树林面积的增加无关。相反,受西南季风影响的潮汐流将沉积物带入三角洲的潮汐河道,导致河道被填满,为红树林创造了合适的栖息地,这是印度河三角洲红树林扩大的主要原因。此外,在研究区西北部和西南部观察到的植树造林活动也促进了红树林的恢复。西北地区最北部红树林的消失归因于一次漏油事件。这项研究强调了印度河三角洲红树林生态系统的动态性质,该地区气候干旱,人口密度低。研究结果为了解影响红树林增减的因素提供了宝贵的见解,可为全球红树林恢复工作的管理策略提供参考。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Machine learning-based monitoring of mangrove ecosystem dynamics in the Indus Delta

Mangrove forests play a vital role in carbon sequestration, typhoon-induced wave attenuation, and the provision of ecological services. However, mangrove ecosystems have experienced large-scale loss globally due to rising sea levels and anthropogenic activities. This study investigates the dynamic changes in mangrove cover within the mega-Indus delta, the largest delta in Pakistan and Southern Asia, using multi-temporal remote sensing data and machine learning techniques from 1988 to 2023. The results indicate an increasing trend in mangrove areas in the Indus Delta, with an average annual growth rate of 18.72 %. The spatial distribution of mangrove forests tends to concentrate towards the landward areas, extending along tidal channels, while losses primarily occur in the seaward regions. Rising sea levels pose a potential threat to the survival of these mangroves. The strong southwest monsoon-driven waves are the leading cause of shoreline erosion of the Indus Delta mangroves. Meanwhile, the reduction in riverine sediment discharge is not associated with the increase in mangrove area. Instead, the tidal currents influenced by the southwest monsoon carry sediments into the delta’s tidal channels, causing them to fill and create suitable habitats for mangroves, which are the primary drivers of the observed mangrove expansion in the Indus Delta. Additionally, afforestation activities observed in the northwest and southwest parts of the study area have contributed to the restoration of mangroves. The loss of mangroves in the northernmost part of the northwest region was attributed to an oil spill incident. This study highlights the dynamic nature of mangrove ecosystems in the Indus Delta, characterized by an arid climate and low population density. The findings provide valuable insights into the factors influencing mangrove gain and loss and can inform management strategies for global mangrove restoration efforts.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Forest Ecology and Management
Forest Ecology and Management 农林科学-林学
CiteScore
7.50
自引率
10.80%
发文量
665
审稿时长
39 days
期刊介绍: Forest Ecology and Management publishes scientific articles linking forest ecology with forest management, focusing on the application of biological, ecological and social knowledge to the management and conservation of plantations and natural forests. The scope of the journal includes all forest ecosystems of the world. A peer-review process ensures the quality and international interest of the manuscripts accepted for publication. The journal encourages communication between scientists in disparate fields who share a common interest in ecology and forest management, bridging the gap between research workers and forest managers. We encourage submission of papers that will have the strongest interest and value to the Journal''s international readership. Some key features of papers with strong interest include: 1. Clear connections between the ecology and management of forests; 2. Novel ideas or approaches to important challenges in forest ecology and management; 3. Studies that address a population of interest beyond the scale of single research sites, Three key points in the design of forest experiments, Forest Ecology and Management 255 (2008) 2022-2023); 4. Review Articles on timely, important topics. Authors are welcome to contact one of the editors to discuss the suitability of a potential review manuscript. The Journal encourages proposals for special issues examining important areas of forest ecology and management. Potential guest editors should contact any of the Editors to begin discussions about topics, potential papers, and other details.
期刊最新文献
Post-fire management and biocrust development interact in mid-term soil recovery after a wildfire Landscape forest cover and local vegetation structure mediate multitrophic relationships but not the leaf damage in cacao trees Legacy of traditional forest management: The impact of historical charcoal burning on soil biodiversity after centuries Spatial patterns of damage and tree mortality in a selectively logged Atlantic Forest Disentangling the contributions of ecological conditions to biomass in longleaf pine forests
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1