通过双功能掺锡二氧化钛催化剂光催化降解空气中的低浓度气态苯

IF 6.7 2区 环境科学与生态学 Q1 BIOTECHNOLOGY & APPLIED MICROBIOLOGY Environmental Technology & Innovation Pub Date : 2024-08-20 DOI:10.1016/j.eti.2024.103804
Houkui Xiang , Tao Luo , Yuchun Ji , Tongqiang Xiong , Libing Qian , Sheng Yang , Hongliang Wang
{"title":"通过双功能掺锡二氧化钛催化剂光催化降解空气中的低浓度气态苯","authors":"Houkui Xiang ,&nbsp;Tao Luo ,&nbsp;Yuchun Ji ,&nbsp;Tongqiang Xiong ,&nbsp;Libing Qian ,&nbsp;Sheng Yang ,&nbsp;Hongliang Wang","doi":"10.1016/j.eti.2024.103804","DOIUrl":null,"url":null,"abstract":"<div><p>Benzene, a common volatile organic compound (VOC) detected in indoor environments, poses challenges for its removal because of its stable molecular structure and low-concentration. In this study, we successfully synthesized tin-doped titanium dioxide (Sn-TiO<sub>2</sub>) using a simple hydrothermal method. Various characterization techniques including X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), scanning electron microscopy (SEM), transmission electron microscopy (TEM), Brunner–Emmet–Teller (BET) and molecular probes were employed to analyze the phase composition, structure and morphology, as well as photocatalytic properties of TiO<sub>2</sub> and Sn-TiO<sub>2</sub>. The characterization results showed that moderate addition of tin doping not only effectively enhanced the capture ability of benzene molecules but also promoted hydroxyl radicals (·OH) generation, which was further validated by <em>in-situ</em> diffuse reflectance infrared Fourier transform (DRIFT) spectra and density function theory (DFT) calculations. Degradation experiments on gaseous benzene revealed that under 15 W ultraviolet (UV) light irradiation in humid and closed conditions for 60 min, 1 % Sn-TiO<sub>2</sub> achieved a benzene degradation efficiency of 93.14 %, with almost complete mineralization. Furthermore, flow system experiments demonstrated efficient decomposition of trace amounts of benzene (∼10 mg/m<sup>3</sup>) in the air to satisfy emission standards when employing 1 % Sn-TiO<sub>2</sub> at a flow rate of 100 L/min.</p></div>","PeriodicalId":11725,"journal":{"name":"Environmental Technology & Innovation","volume":"36 ","pages":"Article 103804"},"PeriodicalIF":6.7000,"publicationDate":"2024-08-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2352186424002803/pdfft?md5=b655c2f5f0009021035eae65d91fcdf1&pid=1-s2.0-S2352186424002803-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Photocatalytic degradation of low-concentration gaseous benzene in air via bifunctional tin-doped titanium dioxide catalyst\",\"authors\":\"Houkui Xiang ,&nbsp;Tao Luo ,&nbsp;Yuchun Ji ,&nbsp;Tongqiang Xiong ,&nbsp;Libing Qian ,&nbsp;Sheng Yang ,&nbsp;Hongliang Wang\",\"doi\":\"10.1016/j.eti.2024.103804\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Benzene, a common volatile organic compound (VOC) detected in indoor environments, poses challenges for its removal because of its stable molecular structure and low-concentration. In this study, we successfully synthesized tin-doped titanium dioxide (Sn-TiO<sub>2</sub>) using a simple hydrothermal method. Various characterization techniques including X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), scanning electron microscopy (SEM), transmission electron microscopy (TEM), Brunner–Emmet–Teller (BET) and molecular probes were employed to analyze the phase composition, structure and morphology, as well as photocatalytic properties of TiO<sub>2</sub> and Sn-TiO<sub>2</sub>. The characterization results showed that moderate addition of tin doping not only effectively enhanced the capture ability of benzene molecules but also promoted hydroxyl radicals (·OH) generation, which was further validated by <em>in-situ</em> diffuse reflectance infrared Fourier transform (DRIFT) spectra and density function theory (DFT) calculations. Degradation experiments on gaseous benzene revealed that under 15 W ultraviolet (UV) light irradiation in humid and closed conditions for 60 min, 1 % Sn-TiO<sub>2</sub> achieved a benzene degradation efficiency of 93.14 %, with almost complete mineralization. Furthermore, flow system experiments demonstrated efficient decomposition of trace amounts of benzene (∼10 mg/m<sup>3</sup>) in the air to satisfy emission standards when employing 1 % Sn-TiO<sub>2</sub> at a flow rate of 100 L/min.</p></div>\",\"PeriodicalId\":11725,\"journal\":{\"name\":\"Environmental Technology & Innovation\",\"volume\":\"36 \",\"pages\":\"Article 103804\"},\"PeriodicalIF\":6.7000,\"publicationDate\":\"2024-08-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2352186424002803/pdfft?md5=b655c2f5f0009021035eae65d91fcdf1&pid=1-s2.0-S2352186424002803-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Environmental Technology & Innovation\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2352186424002803\",\"RegionNum\":2,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOTECHNOLOGY & APPLIED MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental Technology & Innovation","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2352186424002803","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

苯是室内环境中检测到的一种常见挥发性有机化合物(VOC),由于其分子结构稳定且浓度较低,因此给去除苯带来了挑战。在本研究中,我们采用简单的水热法成功合成了掺锡二氧化钛(Sn-TiO2)。研究采用了多种表征技术,包括 X 射线衍射 (XRD)、X 射线光电子能谱 (XPS)、扫描电子显微镜 (SEM)、透射电子显微镜 (TEM)、Brunner-Emmet-Teller (BET) 和分子探针,分析了 TiO2 和 Sn-TiO2 的相组成、结构和形貌以及光催化性能。表征结果表明,适度的锡掺杂不仅能有效提高苯分子的捕获能力,还能促进羟基自由基(-OH)的生成,这一点通过原位漫反射红外傅里叶变换(DRIFT)光谱和密度函数理论(DFT)计算得到了进一步验证。气态苯的降解实验表明,在潮湿和密闭条件下,15 W 紫外线(UV)照射 60 分钟,1 % Sn-TiO2 的苯降解效率达到 93.14 %,几乎完全矿化。此外,流动系统实验表明,在 100 升/分钟的流速下使用 1 % 的二氧化硫锡,可有效分解空气中的微量苯(10 毫克/立方米),从而达到排放标准。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Photocatalytic degradation of low-concentration gaseous benzene in air via bifunctional tin-doped titanium dioxide catalyst

Benzene, a common volatile organic compound (VOC) detected in indoor environments, poses challenges for its removal because of its stable molecular structure and low-concentration. In this study, we successfully synthesized tin-doped titanium dioxide (Sn-TiO2) using a simple hydrothermal method. Various characterization techniques including X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), scanning electron microscopy (SEM), transmission electron microscopy (TEM), Brunner–Emmet–Teller (BET) and molecular probes were employed to analyze the phase composition, structure and morphology, as well as photocatalytic properties of TiO2 and Sn-TiO2. The characterization results showed that moderate addition of tin doping not only effectively enhanced the capture ability of benzene molecules but also promoted hydroxyl radicals (·OH) generation, which was further validated by in-situ diffuse reflectance infrared Fourier transform (DRIFT) spectra and density function theory (DFT) calculations. Degradation experiments on gaseous benzene revealed that under 15 W ultraviolet (UV) light irradiation in humid and closed conditions for 60 min, 1 % Sn-TiO2 achieved a benzene degradation efficiency of 93.14 %, with almost complete mineralization. Furthermore, flow system experiments demonstrated efficient decomposition of trace amounts of benzene (∼10 mg/m3) in the air to satisfy emission standards when employing 1 % Sn-TiO2 at a flow rate of 100 L/min.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Environmental Technology & Innovation
Environmental Technology & Innovation Environmental Science-General Environmental Science
CiteScore
14.00
自引率
4.20%
发文量
435
审稿时长
74 days
期刊介绍: Environmental Technology & Innovation adopts a challenge-oriented approach to solutions by integrating natural sciences to promote a sustainable future. The journal aims to foster the creation and development of innovative products, technologies, and ideas that enhance the environment, with impacts across soil, air, water, and food in rural and urban areas. As a platform for disseminating scientific evidence for environmental protection and sustainable development, the journal emphasizes fundamental science, methodologies, tools, techniques, and policy considerations. It emphasizes the importance of science and technology in environmental benefits, including smarter, cleaner technologies for environmental protection, more efficient resource processing methods, and the evidence supporting their effectiveness.
期刊最新文献
Remediation of Pb and Cd contaminated sediments by wheat straw biochar and microbial community analysis The ammonium transporter AmtB is dispensable for the uptake of ammonium in the phototrophic diazotroph Rhodopseudomonas palustris An innovative sustainable solution: Recycling shield-discharge waste soil as fine aggregate to produce eco-friendly geopolymer-based flowable backfill materials Assessing subgroup differences and underlying causes of ozone-associated mortality burden in China using multi-source data Synchronously improving intracellular electron transfer in electron-donating bacteria and electron-accepting methanogens for facilitating direct interspecies electron transfer during anaerobic digestion of kitchen wastes
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1