Yi Kang, Yu-Juan Lin, Ullah Abid, Fei-Fei Zhang, Xiao-Zhang Yu
{"title":"三价铬胁迫引发水稻植物次生代谢物的积累:生化分析与转录组分析的整合","authors":"Yi Kang, Yu-Juan Lin, Ullah Abid, Fei-Fei Zhang, Xiao-Zhang Yu","doi":"10.1016/j.eti.2024.103802","DOIUrl":null,"url":null,"abstract":"<div><p>Trivalent chromium [Cr (III)] is a frequently detected environmental contaminant that negatively affects plant metabolism, growth, and yield. Plant secondary metabolites are non-nutrient compounds involved in diverse physiological functions in response to abiotic stresses. This study performed biochemical and transcriptomic analyses to clarify the protective role and mechanisms of secondary metabolites in rice seedlings under Cr(III) stress. The content of measured secondary metabolites i.e., total soluble phenolics, flavonoids, lignin, and anthocyanin in rice tissues was significantly enhanced under Cr(III) exposure. Additionally, the activities of several enzymes including chalcone synthase, phenylalanine ammonialyase, peroxidase, and anthocyanidin synthase, were positively activated. Transcriptomic analysis revealed a number of differentially expressed genes (DEGs) in Cr(III)-treated rice seedlings and their expression patterns are tissue-specific. Additionally, the DEGs involved in secondary metabolism pathways were evident after KEGG enrichment analysis. Cr(III) exposure resulted in distinct genetic regulation strategies in rice tissues, with different DEGs activating various sub-pathways in the secondary metabolism pathways to cope with Cr(III) stress. Furthermore, the integrated correlation analysis of the secondary metabolites and transcriptome data identified key genes involved in different steps of the sub-pathways of secondary metabolism pathway in rice plants under Cr(III) stress. This study indicates that the accumulation of secondary metabolites in rice plants is a survival and detoxification strategy to reduce the adverse effects of toxic compounds. Future research should explore how key genes in secondary metabolism pathways aid in Cr(III) detoxification and enhance crop stress tolerance.</p></div>","PeriodicalId":11725,"journal":{"name":"Environmental Technology & Innovation","volume":"36 ","pages":"Article 103802"},"PeriodicalIF":6.7000,"publicationDate":"2024-08-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2352186424002785/pdfft?md5=963539bcd31e99228b192042829634f6&pid=1-s2.0-S2352186424002785-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Trivalent chromium stress trigger accumulation of secondary metabolites in rice plants: Integration of biochemical and transcriptomic analysis\",\"authors\":\"Yi Kang, Yu-Juan Lin, Ullah Abid, Fei-Fei Zhang, Xiao-Zhang Yu\",\"doi\":\"10.1016/j.eti.2024.103802\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Trivalent chromium [Cr (III)] is a frequently detected environmental contaminant that negatively affects plant metabolism, growth, and yield. Plant secondary metabolites are non-nutrient compounds involved in diverse physiological functions in response to abiotic stresses. This study performed biochemical and transcriptomic analyses to clarify the protective role and mechanisms of secondary metabolites in rice seedlings under Cr(III) stress. The content of measured secondary metabolites i.e., total soluble phenolics, flavonoids, lignin, and anthocyanin in rice tissues was significantly enhanced under Cr(III) exposure. Additionally, the activities of several enzymes including chalcone synthase, phenylalanine ammonialyase, peroxidase, and anthocyanidin synthase, were positively activated. Transcriptomic analysis revealed a number of differentially expressed genes (DEGs) in Cr(III)-treated rice seedlings and their expression patterns are tissue-specific. Additionally, the DEGs involved in secondary metabolism pathways were evident after KEGG enrichment analysis. Cr(III) exposure resulted in distinct genetic regulation strategies in rice tissues, with different DEGs activating various sub-pathways in the secondary metabolism pathways to cope with Cr(III) stress. Furthermore, the integrated correlation analysis of the secondary metabolites and transcriptome data identified key genes involved in different steps of the sub-pathways of secondary metabolism pathway in rice plants under Cr(III) stress. This study indicates that the accumulation of secondary metabolites in rice plants is a survival and detoxification strategy to reduce the adverse effects of toxic compounds. Future research should explore how key genes in secondary metabolism pathways aid in Cr(III) detoxification and enhance crop stress tolerance.</p></div>\",\"PeriodicalId\":11725,\"journal\":{\"name\":\"Environmental Technology & Innovation\",\"volume\":\"36 \",\"pages\":\"Article 103802\"},\"PeriodicalIF\":6.7000,\"publicationDate\":\"2024-08-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2352186424002785/pdfft?md5=963539bcd31e99228b192042829634f6&pid=1-s2.0-S2352186424002785-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Environmental Technology & Innovation\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2352186424002785\",\"RegionNum\":2,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOTECHNOLOGY & APPLIED MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental Technology & Innovation","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2352186424002785","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
Trivalent chromium stress trigger accumulation of secondary metabolites in rice plants: Integration of biochemical and transcriptomic analysis
Trivalent chromium [Cr (III)] is a frequently detected environmental contaminant that negatively affects plant metabolism, growth, and yield. Plant secondary metabolites are non-nutrient compounds involved in diverse physiological functions in response to abiotic stresses. This study performed biochemical and transcriptomic analyses to clarify the protective role and mechanisms of secondary metabolites in rice seedlings under Cr(III) stress. The content of measured secondary metabolites i.e., total soluble phenolics, flavonoids, lignin, and anthocyanin in rice tissues was significantly enhanced under Cr(III) exposure. Additionally, the activities of several enzymes including chalcone synthase, phenylalanine ammonialyase, peroxidase, and anthocyanidin synthase, were positively activated. Transcriptomic analysis revealed a number of differentially expressed genes (DEGs) in Cr(III)-treated rice seedlings and their expression patterns are tissue-specific. Additionally, the DEGs involved in secondary metabolism pathways were evident after KEGG enrichment analysis. Cr(III) exposure resulted in distinct genetic regulation strategies in rice tissues, with different DEGs activating various sub-pathways in the secondary metabolism pathways to cope with Cr(III) stress. Furthermore, the integrated correlation analysis of the secondary metabolites and transcriptome data identified key genes involved in different steps of the sub-pathways of secondary metabolism pathway in rice plants under Cr(III) stress. This study indicates that the accumulation of secondary metabolites in rice plants is a survival and detoxification strategy to reduce the adverse effects of toxic compounds. Future research should explore how key genes in secondary metabolism pathways aid in Cr(III) detoxification and enhance crop stress tolerance.
期刊介绍:
Environmental Technology & Innovation adopts a challenge-oriented approach to solutions by integrating natural sciences to promote a sustainable future. The journal aims to foster the creation and development of innovative products, technologies, and ideas that enhance the environment, with impacts across soil, air, water, and food in rural and urban areas.
As a platform for disseminating scientific evidence for environmental protection and sustainable development, the journal emphasizes fundamental science, methodologies, tools, techniques, and policy considerations. It emphasizes the importance of science and technology in environmental benefits, including smarter, cleaner technologies for environmental protection, more efficient resource processing methods, and the evidence supporting their effectiveness.