采用商用 XBAW 工艺制造的高品质因数、19-GHz 周期极化 AlScN BAW 谐振器

IF 2.9 2区 工程技术 Q2 ENGINEERING, ELECTRICAL & ELECTRONIC IEEE Transactions on Electron Devices Pub Date : 2024-08-09 DOI:10.1109/TED.2024.3435175
Izhar;Merrilyn M. A. Fiagbenu;Xingyu Du;Pariasadat Musavigharavi;Yang Deng;Akhil Gunda;Jeff Leathersich;Craig Moe;Abhay Kochhar;Eric A. Stach;Ramakrishna Vetury;Roy H. Olsson
{"title":"采用商用 XBAW 工艺制造的高品质因数、19-GHz 周期极化 AlScN BAW 谐振器","authors":"Izhar;Merrilyn M. A. Fiagbenu;Xingyu Du;Pariasadat Musavigharavi;Yang Deng;Akhil Gunda;Jeff Leathersich;Craig Moe;Abhay Kochhar;Eric A. Stach;Ramakrishna Vetury;Roy H. Olsson","doi":"10.1109/TED.2024.3435175","DOIUrl":null,"url":null,"abstract":"This article presents 19-GHz bulk acoustic wave (BAW) resonators realized in a periodically poled piezoelectric film (P3F) microfabricated in a commercial XBAW process. The polarization of the three layers comprising the P3F film are realized via a combination of as-grown (two-layer) and electrically poled (one-layer) aluminum scandium nitride (AlScN). To improve the series (\n<inline-formula> <tex-math>${Q}_{s}$ </tex-math></inline-formula>\n) and maximum (\n<inline-formula> <tex-math>${Q}_{\\max }$ </tex-math></inline-formula>\n) quality factors, the device is constructed by connecting two-BAW resonators in series, which lowers the effect of the via resistance when compared with a traditional single BAW. Resonators achieved \n<inline-formula> <tex-math>${Q}_{\\max }$ </tex-math></inline-formula>\n of 531 (with \n<inline-formula> <tex-math>${Q}_{s}$ </tex-math></inline-formula>\n of 348 and \n<inline-formula> <tex-math>${Q}_{p}$ </tex-math></inline-formula>\n of 264) and \n<inline-formula> <tex-math>${\\text {FoM}}_{{os}}$ </tex-math></inline-formula>\n (defined as \n<inline-formula> <tex-math>${\\text {FoM}}_{{os}} = {{f}_{{s},{p}} {Q}}_{{s},{p}} \\times {{10}}^{-{9}}$ </tex-math></inline-formula>\n, where \n<inline-formula> <tex-math>${Q}_{{s},{p}}$ </tex-math></inline-formula>\n is the quality factor at series (\n<inline-formula> <tex-math>${f}_{s}$ </tex-math></inline-formula>\n) or parallel (\n<inline-formula> <tex-math>${f}_{p}$ </tex-math></inline-formula>\n) resonance frequency) of 6542 at 18.8-GHz frequency, which is higher than most of the state-of-the-art piezoelectric BAW resonators operating at similar and higher frequencies. The experimental results indicate that the P3F BAW resonators are promising for applications in emerging RF communication systems.","PeriodicalId":13092,"journal":{"name":"IEEE Transactions on Electron Devices","volume":null,"pages":null},"PeriodicalIF":2.9000,"publicationDate":"2024-08-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A High Quality Factor, 19-GHz Periodically Poled AlScN BAW Resonator Fabricated in a Commercial XBAW Process\",\"authors\":\"Izhar;Merrilyn M. A. Fiagbenu;Xingyu Du;Pariasadat Musavigharavi;Yang Deng;Akhil Gunda;Jeff Leathersich;Craig Moe;Abhay Kochhar;Eric A. Stach;Ramakrishna Vetury;Roy H. Olsson\",\"doi\":\"10.1109/TED.2024.3435175\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This article presents 19-GHz bulk acoustic wave (BAW) resonators realized in a periodically poled piezoelectric film (P3F) microfabricated in a commercial XBAW process. The polarization of the three layers comprising the P3F film are realized via a combination of as-grown (two-layer) and electrically poled (one-layer) aluminum scandium nitride (AlScN). To improve the series (\\n<inline-formula> <tex-math>${Q}_{s}$ </tex-math></inline-formula>\\n) and maximum (\\n<inline-formula> <tex-math>${Q}_{\\\\max }$ </tex-math></inline-formula>\\n) quality factors, the device is constructed by connecting two-BAW resonators in series, which lowers the effect of the via resistance when compared with a traditional single BAW. Resonators achieved \\n<inline-formula> <tex-math>${Q}_{\\\\max }$ </tex-math></inline-formula>\\n of 531 (with \\n<inline-formula> <tex-math>${Q}_{s}$ </tex-math></inline-formula>\\n of 348 and \\n<inline-formula> <tex-math>${Q}_{p}$ </tex-math></inline-formula>\\n of 264) and \\n<inline-formula> <tex-math>${\\\\text {FoM}}_{{os}}$ </tex-math></inline-formula>\\n (defined as \\n<inline-formula> <tex-math>${\\\\text {FoM}}_{{os}} = {{f}_{{s},{p}} {Q}}_{{s},{p}} \\\\times {{10}}^{-{9}}$ </tex-math></inline-formula>\\n, where \\n<inline-formula> <tex-math>${Q}_{{s},{p}}$ </tex-math></inline-formula>\\n is the quality factor at series (\\n<inline-formula> <tex-math>${f}_{s}$ </tex-math></inline-formula>\\n) or parallel (\\n<inline-formula> <tex-math>${f}_{p}$ </tex-math></inline-formula>\\n) resonance frequency) of 6542 at 18.8-GHz frequency, which is higher than most of the state-of-the-art piezoelectric BAW resonators operating at similar and higher frequencies. The experimental results indicate that the P3F BAW resonators are promising for applications in emerging RF communication systems.\",\"PeriodicalId\":13092,\"journal\":{\"name\":\"IEEE Transactions on Electron Devices\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2024-08-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on Electron Devices\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10632112/\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Electron Devices","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10632112/","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

本文介绍了在商用 XBAW 工艺微加工的周期性极化压电薄膜 (P3F) 中实现的 19-GHz 体声波 (BAW) 谐振器。组成 P3F 薄膜的三层极化是通过原生长(两层)和电极化(一层)氮化铝钪(AlScN)的组合实现的。为了提高串联(${Q}_{s}$)和最大(${Q}_{\max }$)品质因数,该器件通过串联两个 BAW 谐振器来构建,与传统的单 BAW 相比,降低了通路电阻的影响。谐振器的${Q}_{max }$达到了531(其中${Q}_{s}$为348,${Q}_{p}$为264),${text {FoM}}_{os}}$ (定义为${text {FoM}}_{os}} = {{f}_{s},{p}}{Q}}_{s},{p}}\其中,${Q}_{s},{p}}$ 为串联(${f}_{s}$)或并联(${f}_{p}$)共振频率下的品质因数),在 18.8 GHz 频率下为 6542,高于大多数工作在类似或更高频率下的先进压电声表面波谐振器。实验结果表明,P3F 声表面波谐振器有望应用于新兴的射频通信系统。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A High Quality Factor, 19-GHz Periodically Poled AlScN BAW Resonator Fabricated in a Commercial XBAW Process
This article presents 19-GHz bulk acoustic wave (BAW) resonators realized in a periodically poled piezoelectric film (P3F) microfabricated in a commercial XBAW process. The polarization of the three layers comprising the P3F film are realized via a combination of as-grown (two-layer) and electrically poled (one-layer) aluminum scandium nitride (AlScN). To improve the series ( ${Q}_{s}$ ) and maximum ( ${Q}_{\max }$ ) quality factors, the device is constructed by connecting two-BAW resonators in series, which lowers the effect of the via resistance when compared with a traditional single BAW. Resonators achieved ${Q}_{\max }$ of 531 (with ${Q}_{s}$ of 348 and ${Q}_{p}$ of 264) and ${\text {FoM}}_{{os}}$ (defined as ${\text {FoM}}_{{os}} = {{f}_{{s},{p}} {Q}}_{{s},{p}} \times {{10}}^{-{9}}$ , where ${Q}_{{s},{p}}$ is the quality factor at series ( ${f}_{s}$ ) or parallel ( ${f}_{p}$ ) resonance frequency) of 6542 at 18.8-GHz frequency, which is higher than most of the state-of-the-art piezoelectric BAW resonators operating at similar and higher frequencies. The experimental results indicate that the P3F BAW resonators are promising for applications in emerging RF communication systems.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IEEE Transactions on Electron Devices
IEEE Transactions on Electron Devices 工程技术-工程:电子与电气
CiteScore
5.80
自引率
16.10%
发文量
937
审稿时长
3.8 months
期刊介绍: IEEE Transactions on Electron Devices publishes original and significant contributions relating to the theory, modeling, design, performance and reliability of electron and ion integrated circuit devices and interconnects, involving insulators, metals, organic materials, micro-plasmas, semiconductors, quantum-effect structures, vacuum devices, and emerging materials with applications in bioelectronics, biomedical electronics, computation, communications, displays, microelectromechanics, imaging, micro-actuators, nanoelectronics, optoelectronics, photovoltaics, power ICs and micro-sensors. Tutorial and review papers on these subjects are also published and occasional special issues appear to present a collection of papers which treat particular areas in more depth and breadth.
期刊最新文献
Table of Contents Special Issue on Intelligent Sensor Systems for the IEEE Journal of Electron Devices Corrections to “Electron Emission Regimes of Planar Nano Vacuum Emitters” IEEE Open Access Publishing IEEE ELECTRON DEVICES SOCIETY
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1